Comparision of caloric intravenous solutions for hypothermic preserving of Vietnamese stem cells from exfoliated deciduous teeth
Author affiliations
DOI:
https://doi.org/10.15625/vjbt-22326Keywords:
Caloric intravenous solutions, human exfoliated deciduous teeth, hypothermic preservation, mesenchymal stem cells.Abstract
Mesenchymal stem cells from human exfoliated deciduous teeth (SHED), providing significant potential as regenerative medicine due to their multipotency, immunomodulatory properties, and non-invasive collection process. Effective preservation strategies are essential to maintain their quality during storage and transportation for clinical applications. This study evaluated the effects of two caloric intravenous solutions, Dextrose 5% (D5) and Dextrose 5% in Lactated Ringer (D5LR), on the hypothermic storage of SHED derived from Vietnamese donors. SHED was cultured and characterized for immunophenotyping, as well as osteogenic and adipogenic differentiation potential, prior to preservation. The cells were stored at 4°C or 25°C in D5 or D5LR for durations of 2, 4, and 6 hours, and post-storage assessments included cell viability, adhesion, and proliferation capacity. Results showed that D5 preserved higher cell viability and adhesion rates, with storage at 25°C achieving a 75% initial survival rate within 4 hours before declining significantly at 6 hours. Storage at 4°C maintains better adhesion, while proliferative capacity remained unaffected under both conditions. In contrast, SHED stored in D5LR exhibited lower viability, with dramatic declines in adhesion and a complete loss of proliferative capacity under both storage temperatures. In conclusion, D5 proved effective for short-term hypothermic storage of SHED, preserving key cellular properties critical for regenerative applications. Conversely, the solution of D5LR significantly compromised cell functionality, underscoring its unsuitability for clinical use. Notably, this study also represents the first reported successful isolation of SHED from Vietnamese dental tissue, further enhancing its significance. Additionally, these findings support D5 as a practical solution for preserving SHED quality in regenerative medicine.
Downloads
References
Agarwal A., Prabakaran S. A., & Said T. M. (2005). Prevention of oxidative stress injury to sperm. Journal of Andrology, 26(6), 654-660. https://doi.org/10.2164/jandrol.05016
Agmon G., & Christman K. L. (2016). Controlling stem cell behavior with decellularized extracellular matrix scaffolds. Current Opinion in Solid State and Materials Science, 20(4), 193-201. https://doi.org/10.1016/j.cossms.2016.02.001
Ahmad Khalili A., & Ahmad M. R. (2015). A review of cell adhesion studies for biomedical and biological applications. International Journal of Molecular Sciences, 16(8), 18149-18184. https://doi.org/10.3390/ijms160818149
Annibali S., Cristalli M. P., Tonoli F., & Polimeni A. (2014). Stem cells derived from human exfoliated deciduous teeth: A narrative synthesis of literature. European Review for Medical & Pharmacological Sciences, 18(19) 2863-2881.
Arora V., Arora P., & Munshi A. (2009). Banking stem cells from human exfoliated deciduous teeth (SHED): Saving for the future. Journal of Clinical Pediatric Dentistry, 33(4), 289-294. https://doi.org/10.17796/jcpd.33.4.y887672r0j703654
Beningo K. A., Dembo M., Kaverina I., Small J. V., & Wang Y. l. (2001). Nascent focal adhesions are responsible for the generation of strong propulsive forces in migrating fibroblasts. The Journal of Cell Biology, 153(4), 881-888. https://doi.org/10.1083/jcb.153.4.881
Carmeliet P., Dor Y., Herbert J. M., Fukumura D., Brusselmans K., Dewerchin M., et al. (1998). Role of HIF-1α in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesis. Nature, 394(6692), 485-490. https://doi.org/10.1038/28867
Chen Y., Yu B., Xue G., Zhao J., Li R. K., Liu Z., et al. (2013). Effects of storage solutions on the viability of human umbilical cord mesenchymal stem cells for transplantation. Cell Transplantation, 22(6), 1075-1086. https://doi.org/10.3727/096368912X657602
Cosby C. N., Troiano N. W., & Kacena M. A. (2008). The effects of storage conditions on the preservation of enzymatic activity in bone. Journal of Histotechnology, 31(4), 169-173. https://doi.org/10.1179/his.2008.31.4.169
Dalton T. P., Shertzer H. G., & Puga A. (1999). Regulation of gene expression by reactive oxygen. Annual Review of Pharmacology and Toxicology, 39(1), 67-101. https://doi.org/10.1146/annurev.pharmtox.39.1.67
Deng J., Zhao C., Spatz J. P., & Wei Q. (2017). Nanopatterned adhesive, stretchable hydrogel to control ligand spacing and regulate cell spreading and migration. ACS Nano, 11(8), 8282-8291. https://doi.org/10.1021/acsnano.7b03449
Dominici M., Le Blanc K., Mueller I., Slaper-Cortenbach I., Marini F., Krause D., et al. (2006). Minimal criteria for defining multipotent mesenchymal stromal cells. The international society for cellular therapy position statement. Cytotherapy, 8(4), 315-317. https://doi.org/10.1080/14653240600855905
Guibert E. E., Petrenko A. Y., Balaban C. L., Somov A. Y., Rodriguez J. V., & Fuller B. J. (2011). Organ preservation: Current concepts and new strategies for the next decade. Transfusion Medicine and Hemotherapy, 38(2), 125-142. https://doi.org/10.1159/000327033
Honarmandi P., Lee H., Lang M. J., & Kamm R. D. (2011). A microfluidic system with optical laser tweezers to study mechanotransduction and focal adhesion recruitment. Lab on a Chip, 11(4), 684-694. https://doi.org/10.1039/C0LC00487A
Horwitz A. F. (1997). Integrins and health. Scientific American, 276(5), 68-75. https://doi.org/10.1038/scientificamerican0597-68
Huang G.-J., Gronthos S., & Shi S. (2009). Mesenchymal stem cells derived from dental tissues vs. those from other sources: Their biology and role in regenerative medicine. Journal of Dental Research, 88(9), 792-806. https://doi.org/10.1177/0022034509340867
Hubbi M. E., Kshitiz Gilkes D. M., Rey S., Wong C. C., Luo W., et al. (2013). A nontranscriptional role for HIF-1α as a direct inhibitor of DNA replication. Science Signaling, 6(262), ra10-ra10. https://doi.org/10.1126/scisignal.2003417
Ishkitiev N., Yaegaki K., Imai T., Tanaka T., Nakahara T., Ishikawa H., et al. (2012). High-purity hepatic lineage differentiated from dental pulp stem cells in serum-free medium. Journal of Endodontics, 38(4), 475-480. https://doi.org/10.1016/j.joen.2011.12.011
Ismail M. T., & Elbaih A. H. (2020). Principles of intravenous fluids therapy. EC Emergency Medicine and Critical Care, 4(6), 24-46.
Kamijima T., Sakashita M., Miura A., Nishimiya Y., & Tsuda S. (2013). Antifreeze protein prolongs the life-time of insulinoma cells during hypothermic preservation. PLoS One, 8(9), e73643. https://doi.org/10.1371/journal.pone.0073643
Köllmer M., Keskar V., Hauk T. G., Collins J. M., Russell B., & Gemeinhart R. A. (2012). Stem cell-derived extracellular matrix enables survival and multilineage differentiation within superporous hydrogels. Biomacromolecules, 13(4), 963-973. https://doi.org/10.1021/bm300332w
Koyama N., Okubo Y., Nakao K., & Bessho K. (2009). Evaluation of pluripotency in human dental pulp cells. Journal of Oral and Maxillofacial Surgery, 67(3), 501-506. https://doi.org/10.1016/j.joms.2008.09.011
LeBaron R., & Athanasiou K. (2000). Ex vivo synthesis of articular cartilage. Biomaterials, 21(24), 2575-2587. https://doi.org/10.1016/S0142-9612(00)00125-3
Liang C., Li H., Tao Y., Zhou X., Li F., Chen G., et al. (2012). Responses of human adipose-derived mesenchymal stem cells to chemical microenvironment of the intervertebral disc. Journal of Translational Medicine, 10, 1-10. https://doi.org/10.1186/1479-5876-10-49
Liu M., Zhang X., Guo H., Zhu Y., Wen C., Sui X., et al. (2019). Dimethyl sulfoxide-free cryopreservation of chondrocytes based on zwitterionic molecule and polymers. Biomacromolecules, 20(10), 3980-3988. https://doi.org/10.1021/acs.biomac.9b01024
Lockett C. J., Fuller B. J., Busza A. L., & Proctor E. (1995). Hypothermic perfusion preservation of liver: The role of phosphate in stimulating ATP synthesis studied by 31 P NMR. Transplant International, 8, 440-445. https://doi.org/10.1007/BF00335595
Maathuis M.-H. J., Leuvenink H. G., & Ploeg R. J. (2007). Perspectives in organ preservation. Transplantation, 83(10), 1289-1298. https://doi.org/10.1097/01.tp.0000265586.66475.cc
Martinez Saez D., Sasaki R. T., Neves A. d. C., & da Silva M. C. P. (2016). Stem cells from human exfoliated deciduous teeth: A growing literature. Cells Tissues Organs, 202(5-6), 269-280. https://doi.org/10.1159/000447055
Miura M., Gronthos S., Zhao M., Lu B., Fisher L. W., Robey P. G., et al. (2003). SHED: Stem cells from human exfoliated deciduous teeth. Proceedings of the National Academy of Sciences, 100(10), 5807-5812. https://doi.org/10.1073/pnas.0937635100
Nakamura S., Yamada Y., Katagiri W., Sugito T., Ito K., & Ueda M. (2009). Stem cell proliferation pathways comparison between human exfoliated deciduous teeth and dental pulp stem cells by gene expression profile from promising dental pulp. Journal of Endodontics, 35(11), 1536-1542. https://doi.org/10.1016/j.joen.2009.07.024
Nuschke A., Rodrigues M., Wells A. W., Sylakowski K., & Wells A. (2016). Mesenchymal stem cells/multipotent stromal cells (MSCs) are glycolytic and thus glucose is a limiting factor of in vitro models of MSC starvation. Stem Cell Research & Therapy, 7, 1-9. https://doi.org/10.1186/s13287-016-0436-7
Orita H., Fukasawa M., Hirooka S., Uchino H., Fukui K., Kohi M., et al. (1994). Possible deleterious effects of glucose on immature myocytes under hypothermic conditions. The Annals of Thoracic Surgery, 58(4), 1103-1107. https://doi.org/10.1016/0003-4975(94)90466-9
Petrenko Y., Chudickova M., Vackova I., Groh T., Kosnarova E., Cejkova J., et al. (2019). Clinically relevant solution for the hypothermic storage and transportation of human multipotent mesenchymal stromal cells. Stem Cells International, 2019(1), 5909524. https://doi.org/10.1155/2019/5909524
Rizal R., Syaidah R., Aqsha Z. M., Josephin A., & Pakpahan V. M. (2021). Characterization, differentiation, and population doubling time of Wharton’s jelly mesenchymal stem cells (WJ-MSCs) in passage 5 and 8. AIP Conference Proceedings.
Robinson N. J., Picken A., & Coopman K. (2014). Low temperature cell pausing: an alternative short-term preservation method for use in cell therapies including stem cell applications. Biotechnology Letters, 36, 201-209. https://doi.org/10.1007/s10529-013-1349-5
Rubinsky B. (2003). Principles of low temperature cell preservation. Heart Failure Reviews, 8, 277-284. https://doi.org/10.1023/A:1024734003814
Saif M. T. A., Sager C. R., & Coyer S. (2003). Functionalized biomicroelectromechanical systems sensors for force response study at local adhesion sites of single living cells on substrates. Annals of Biomedical Engineering, 31, 950-961. https://doi.org/10.1114/1.1591189
Seo B., Sonoyama W., Yamaza T., Coppe C., Kikuiri T., Akiyama K., et al. (2008). SHED repair critical‐size calvarial defects in mice. Oral diseases, 14(5), 428-434. https://doi.org/10.1111/j.1601-0825.2007.01396.x
Seo C. H., Furukawa K., Montagne K., Jeong H., & Ushida T. (2011). The effect of substrate microtopography on focal adhesion maturation and actin organization via the RhoA/ROCK pathway. Biomaterials, 32(36), 9568-9575. https://doi.org/10.1016/j.biomaterials.2011.08.077
Silva F. d. S., Ramos R. N., Almeida D. C. d., Bassi E. J., Gonzales R. P., Miyagi S. P. H., et al. (2014). Mesenchymal stem cells derived from human exfoliated deciduous teeth (SHEDs) induce immune modulatory profile in monocyte-derived dendritic cells. PLoS One, 9(5), e98050. https://doi.org/10.1371/journal.pone.0098050
Suchánek J., Visek B., Soukup T., El-Din Mohamed S., Ivancakova R., Mokry J., et al. (2010). Stem cells from human exfoliated deciduous teeth-isolation, long term cultivation and phenotypical analysis. Acta Medica (Hradec Kralove), 53(2), 93-99. https://doi.org/10.14712/18059694.2016.66
Sugimura-Wakayama Y., Katagiri W., Osugi M., Kawai T., Ogata K., Sakaguchi K., et al. (2015). Peripheral nerve regeneration by secretomes of stem cells from human exfoliated deciduous teeth. Stem Cells and Development, 24(22), 2687-2699. https://doi.org/10.1089/scd.2015.0104
Taylor M. J. (2006). Biology of cell survival in the cold: The basis for biopreservation of tissues and organs. Advances in Biopreservation, 15-62. https://doi.org/10.1201/9781420004229.ch2
Upadhyay A., Jaber B. L., & Madias N. E. (2006). Incidence and prevalence of hyponatremia. The American Journal of Medicine, 119(7), S30-S35. https://doi.org/10.1016/j.amjmed.2006.05.005
Wang J., Wei Y., Zhao S., Zhou Y., He W., Zhang Y., et al. (2017). The analysis of viability for mammalian cells treated at different temperatures and its application in cell shipment. PLoS One, 12(4), e0176120. https://doi.org/10.1371/journal.pone.0176120
Wang Z., Pan J., Wright J. T., Bencharit S., Zhang S., Everett E. T., et al. (2010). Putative stem cells in human dental pulp with irreversible pulpitis: an exploratory study. Journal of Endodontics, 36(5), 820-825. https://doi.org/10.1016/j.joen.2010.02.003
Wheeler T. J., Wiegand C. B., & Chien S. (2005). Fructose-1, 6-bisphosphate enhances hypothermic preservation of cardiac myocytes. The Journal of Heart and Lung Transplantation, 24(9), 1378-1384. https://doi.org/10.1016/j.healun.2004.08.013
Yamaza T., Kentaro A., Chen C., Liu Y., Shi Y., Gronthos S., et al. (2010). Immunomodulatory properties of stem cells from human exfoliated deciduous teeth. Stem Cell Research & Therapy, 1, 1-11. https://doi.org/10.1186/scrt5
Yang J., Gao L., Liu M., Sui X., Zhu Y., Wen C., et al. (2020). Advanced biotechnology for cell cryopreservation. Transactions of Tianjin University, 26, 409-423. https://doi.org/10.1007/s12209-019-00227-6
Zhang H., Li W., Wu Y., Zhang S., L J., Han L., et al. (2022). Effects of changes in osmolarity on the biological activity of human normal nucleus pulposus mesenchymal stem cells. Stem Cell International, 2022(1), 1121064. https://doi.org/https://doi.org/10.1155/2022/1121064
