Probiotic characterization of Levilactobacillus brevis CM04 isolated from Hanoi-pickled Dong Du (Brassica campestris L.
Author affiliations
DOI:
https://doi.org/10.15625/vjbt-22577Keywords:
CM04, hyperuricemia, probiotic characteristics, safety testAbstract
Hyperuricemia, characterized by increasing concentrations of serum uric acid, is associated with metabolic disorders such as gout, diabetes, and heart diseases. Hyperuricemia is a prevalent condition with a rapidly increasing global incidence. Probiotics represent the promising option for preventing and treating hyperuricemia without side effects. Microorganisms can be considered probiotics; they must pass safety evaluations. This study assessed the probiotic characteristics of Levilactobacillus brevis CM04. L. brevis CM04 was isolated from Hanoi-pickled Dong Du (Brassica campestris L.) and exhibited high purine degradation ability. This strain showed a strong survival capability in the oral-gastrointestinal assay and adhered to intestinal cells more effectively than Lactobacillus rhamnosus GG (LGG). CM04 grew well in both media with and without sodium taurocholate, however, it did not exhibit bile salt deconjugation activity. Additionally, CM04 exhibited strong antimicrobial activity against pathogenic bacteria and sensitivity to all tested antibiotics. These findings indicate that L. brevis CM04 possesses probiotic characteristics.
Downloads
References
Ahn Y. T., Kim G. B., Lim K. S., Baek Y. J., & Kim H. U. (2003). Deconjugation of bile salts by Lactobacillus acidophilus isolates. International Dairy Journal, 13(4), 303-311. https://doi.org/10.1016/S0958-6946(02)00174-7
Anisimova E., Gorokhova I., Karimullina G., & Yarullina D. (2022). Alarming antibiotic resistance of lactobacilli isolated from probiotic preparations and dietary supplements. Antibiotics, 11(11), 1557. https://doi.org/10.3390/antibiotics11111557
Begley M., Hill C., & Gahan C. G. (2006). Bile salt hydrolase activity in probiotics. Applied and Environmental Microbiology, 72(3), 1729-1738. https://doi.org/10.1128/AEM.72.3.1729-1738.2006
Casarotti S. N., Carneiro B. M., Todorov S. D., Nero L. A., Rahal P., & Penna A. L. B. (2017). In vitro assessment of safety and probiotic potential characteristics of Lactobacillus strains isolated from water buffalo mozzarella cheese. Annals of Microbiology, 67, 289-301. https://doi.org/10.1007/s13213-017-1258-2
Gerhardt P., Murray R., Costilow R. N., Nester E. W., Wood W. A., Krieg N. R., et al. (1981). Manual of Methods for General Bacteriology (Vol. 1): American Society for Microbiology Washington, DC. https://pmc.ncbi.nlm.nih.gov/articles/instance/270730/pdf/jcm00132-0002.pdf
Han S., Lu Y., Xie J., Fei Y., Zheng G., Wang Z., et al. (2021). Probiotic gastrointestinal transit and colonization after oral administration: A long journey. Frontiers in Cellular and Infection Microbiology, 11, 609722. https://doi.org/10.3389/fcimb.2021.609722
Honda K., Moto M., Uchida N., He F., & Hashizume N. (2012). Anti-diabetic effects of lactic acid bacteria in normal and type 2 diabetic mice. Journal of Clinical Biochemistry and Nutrition, 51(2), 96-101. https://doi.org/10.3164/jcbn.11-07
Huong N. T., Son D. B., Anh N. T. N., Khanh D. P., Thuy T. T. T., & Chung N. T. (2025). Isolation and screening of purine-lowering lactic bacteria strains from pickled shrimps and pickled dong du. TNU Journal of Science and Technology, 230(09), 332-339. https://doi.org/10.34238/tnu-jst.11426
Huong V. Q., Yen V. T., & Thuy N. T. T. (2022). Isolation and selection of lactic acid bacteria for probiotic beverage production from ginger. Vietnam Journal of Agricultural Sciences, 20(12), 1581-1590. https://tapchi.vnua.edu.vn/wp-content/uploads/2023/01/tap-chi-so-12.1s.pdf
Jang H. J., Lee N.-K., & Paik H. D. (2019). Probiotic characterization of Lactobacillus brevis KU15153 showing antimicrobial and antioxidant effect isolated from kimchi. Food Science and Biotechnology, 28, 1521-1528. https://doi.org/10.1007/s10068-019-00576-x
Kuda T., Kawahara M., Nemoto M., Takahashi H., & Kimura B. (2014). In vitro antioxidant and anti-inflammation properties of lactic acid bacteria isolated from fish intestines and fermented fish from the Sanriku Satoumi region in Japan. Food Research International, 64, 248-255. https://doi.org/10.1016/j.foodres.2014.06.028
Lee N. K., Han K. J., Son S. H., Eom S. J., Lee, S. K., & Paik H. D. (2015). Multifunctional effect of probiotic Lactococcus lactis KC24 isolated from kimchi. LWT-Food Science and Technology, 64(2), 1036-1041. https://doi.org/10.1016/j.lwt.2015.07.019
Lee Y., Kim N., Werlinger P., Suh D.-A., Lee H., Cho J. H., et al. (2022). Probiotic characterization of Lactobacillus brevis MJM60390 and in vivo assessment of its antihyperuricemic activity. Journal of Medicinal Food, 25(4), 367-380. https://doi.org/10.1089/jmf.2021.K.0171
Li L., Zhang Y., & Zeng C. (2020). Update on the epidemiology, genetics, and therapeutic options of hyperuricemia. American Journal of Translational Research, 12(7), 3167. https://pmc.ncbi.nlm.nih.gov/articles/PMC7407685/pdf/ajtr0012-3167.pdf
Lin J.-X., Xiong T., Peng Z., Xie M., & Peng F. (2022). Novel lactic acid bacteria with anti-hyperuricemia ability: Screening and in vitro probiotic characteristics. Food Bioscience, 49, 101840.
Rychen G., Aquilina G., Azimonti G., Bampidis V., Bastos M. de L., Bories G., et al. (2018). Guidance on the characterisation of microorganisms used as feed additives or as production organisms. EFSA Journal, 16(3), e05206. https://doi.org/10.2903/j.efsa.2018.5206
Palaniyandi S. A., Damodharan K., Suh J. W., & Yang S. H. (2020). Probiotic characterization of cholesterol-lowering Lactobacillus fermentum MJM60397. Probiotics and Antimicrobial Proteins, 12, 1161-1172. https://doi.org/10.1007/s12602-019-09585-y
Pham H. N., Nguyen K.T., Luyen T.N.P., Tran K.L., Bui D.T.N & Tran L. H. (2024). Isolation and screening of lactic acid bacteria with probiotic potetials from nem chua for applycation in probiotic production. National Biotechnology Conference 2024, 278-283.
Pillinger M. H., & Mandell B. F. (2020). Therapeutic approaches in the treatment of gout. Paper presented at the Seminars in Arthritis and Rheumatism. https://doi.org/10.1016/j.semarthrit.2020.04.010
Reid G. (2005). The importance of guidelines in the development and application of probiotics. Current Pharmaceutical Design, 11(1), 11-16. https://doi.org/10.2174/1381612053382395
Rocha C. S., Gomes-Santos A. C., Moreira T. G., de Azevedo M., Luerce T. D., Mariadassou M., et al. (2014). Local and systemic immune mechanisms underlying the anti-colitis effects of the dairy bacterium Lactobacillus delbrueckii. PLoS One, 9(1), e85923. https://doi.org/10.1371/journal.pone.0085923
Sharma R., Garg P., Kumar P., Bhatia S. K., & Kulshrestha S. (2020). Microbial fermentation and its role in quality improvement of fermented foods. Fermentation, 6(4), 106. https://doi.org/10.3390/fermentation6040106
Wiegand I., Hilpert K., & Hancock R. E. (2008).
Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nature Protocols, 3(2), 163-175. https://doi.org/10.1038/nprot.2007.521
Yang S. C., Lin C.-H., Sung C. T., & Fang J. Y. (2014). Antibacterial activities of bacteriocins: application in foods and pharmaceuticals. Frontiers in Microbiology, 5, 241. https://doi.org/10.3389/fmicb.2014.00241
Yu H. S., Jang H. J., Lee N. K., & Paik H. D. (2019). Evaluation of the probiotic characteristics and prophylactic potential of Weissella cibaria strains isolated from kimchi. LWT, 112, 108229. https://doi.org/10.1016/j.lwt.2019.05.127
Zhao H., Lu Z., & Lu Y. (2022). The potential of probiotics in the amelioration of hyperuricemia. Food & Function, 13(5), 2394-2414. https://doi.org/10.1039/D1FO03206B
