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Abstract. A facile and controllable one-step atmospheric pressure microplasma method was em-
ployed to synthesize nitrogen-doped carbon quantum dots with tunable optical properties. The
nitrogen-doped carbon quantum dots were characterized using Fourier transform infrared spec-
troscopy, high-resolution transmission electron microscopy, UV–Vis absorption spectroscopy, and
photoluminescence spectroscopy. High-resolution transmission electron microscopy revealed uni-
formly distributed spherical nanoparticles with a graphite-like structure. Fourier transform in-
frared spectroscopy confirmed effective nitrogen doping, enhancing chemical stability. UV–Vis
spectroscopy revealed redshifted absorption peaks, indicating improved electronic interactions
and a reduced bandgap (4.05 eV) compared to those of undoped carbon quantum dots (4.18 eV).
Photoluminescence analysis revealed excitation-dependent emission and a significantly higher
photoluminescence quantum yield of 33.09%. These results suggest that nitrogen-doped carbon
quantum dots hold promise for applications in optoelectronics and bioimaging, providing a foun-
dation for further optimization in future studies.
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1. Introduction

The development of photoluminescent nanomaterials has revolutionized the field of fluores-
cent materials [1–4]. Among the various options being explored, such as semiconductor nanocrys-
tals, metal complexes, and carbon-based materials, carbon-based materials have gained significant
attention. This is due to their unique advantages, including biocompatibility, simple synthesis, low
cost, photostability, and environmental friendliness [2, 5–8]. However, inducing luminescence in
carbon-based materials has been challenging. Traditional forms of carbon, such as graphite and di-
amond, do not readily emit light due to the conductivity of graphite and the wide indirect bandgap
of 5.5 eV of diamond [9]. Nonetheless, the advent of nanostructuring has provided a solution.
Carbon nanostructures, such as single- and multi-walled carbon nanotubes and fullerenes, possess
unique properties that allow for efficient light emission despite these limitations [10, 11].

Xiaoyou Xu and colleagues made significant breakthroughs in the discovery of carbon
quantum dots (CQDs) in 2004 [12]. These nanomaterials, which are typically smaller than 10
nm, feature a sp2 hybridized graphitic core with a functionalized surface [7, 13]. Research has fo-
cused on understanding their unique photoluminescence (PL), which is influenced by their chem-
ical structure, core properties, and surface functionalities [14, 15]. Despite proposed mechanisms
such as size distribution, surface states, and exciton recombination, the exact origins of CQD
light emission are not fully understood due to limited theoretical models and data. Key questions
include whether CQDs can be controlled or modified to tailor light emissions, expanding their
applications [1, 2]. Investigating the binding properties of CQDs with ligands and enhancing their
photophysical properties through chemical and physical modifications are crucial for broader ap-
plications [1, 8]. Techniques such as surface functionalization, core-shell design, and heteroatom
doping (sulfur, nitrogen, boron, phosphorus) are promising, particularly nitrogen doping, because
of its effective interaction with carbon atoms, enabling precise control of the PL properties of
CQDs [16].

Nitrogen plays a crucial role in CQDs synthesis as a key charge carrier atom [17]. With
an atomic radius comparable to that of carbon and five valence electrons in its outermost shell,
nitrogen forms strong bonds with carbon atoms within the CQDs structure [18, 19]. Importantly,
nitrogen functions as an n-type donor atom, readily donating electrons to the CQDs system. Dur-
ing excitation, these electrons can transfer to the lowest unoccupied molecular orbital of the sub-
strate, quenching the self-fluorescence of the CQDs [17,20]. This quenching effect, influenced by
the abundance of n-type nitrogen on CQDs surfaces, broadens their analytical range and enhances
their detection capabilities, bolstering their potential for various applications [20–22]. The modifi-
cation of CQDs PL via nitrogen doping has been reported to significantly improve quantum yields
and photostability, as shown in recent studies [23].

Various synthesis methods including chemical-only methods, hydrothermal and solvother-
mal processes, oxidative acid treatments, microwave treatments, laser ablation, and electrochemi-
cal methods, are used to produce CQDs with tunable optical properties and high quantum yields [7,
24–27]. Achieving precise particle sizes often requires post-synthesis treatments such as washing
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and annealing, which can be time- and energy-intensive, posing challenges for scalability and re-
producibility. An alternative method uses plasma-liquid discharge energy to activate precursors
without requiring thermal or chemical energy, making it suitable for temperature-sensitive or low-
reactivity precursors. This approach enables the functionalization and doping of CQDs through
plasma-induced nonequilibrium electrochemistry methods, producing CQDs with strong lumines-
cence. Low-temperature and low-power synthesis methods, such as microplasma synthesis, are
preferred for applications where preserving surface functional groups is crucial for maintaining
luminescence [28]. More recent work has intensified reactivity using a bespoke plasma system,
demonstrating that transient hydrodynamics can enhance reaction rates, improve mass yield, and
increase process efficiency for large-scale production of nitrogen-doped carbon quantum dots (N-
CQDs) [29].

In previous research, we synthesized CQDs using atmospheric pressure microplasma and
evaluated their antibacterial activities [30, 31]. Expanding on this research, we conducted experi-
mental investigations to examine the electronic transitions within N-CQDs. Our findings highlight
that these electronic transitions primarily originate from nitrogen-doped sites within N-CQDs. By
utilizing our synthesis method to control substitutional versus surface doping without impacting
the quantum dot morphology, we systematically explored the complex relationships among the
structure, chemical composition, and emission properties of N-CQDs. This study significantly
enhances our understanding of N-CQD properties, elucidating changes in PL emission and the
critical role of N-CQD absorption in promoting exciton radiative recombination. These insights
are essential for advancing the applications of N-CQDs in optoelectronic devices.

2. Experiment

N-CQDs were synthesized via a plasma method using acetone and ammonia as precursors,
as shown in Fig. 1. Acetone provided the carbon source, while ammonia introduced nitrogen
doping. The plasma reactor enabled controlled reactions under specific temperature and pressure
conditions. Throughout the synthesis process, the precursor mixture underwent plasma discharge
to promote the formation of N-CQDs. Following synthesis, the product was purified through
centrifugation and dialysis to eliminate any remaining precursors and byproducts.

The synthesized N-CQDs underwent comprehensive characterization using various analyt-
ical techniques. High-resolution transmission electron microscopy (HRTEM) was employed to
analyze their morphology and size distribution. Fourier transform infrared spectroscopy (FTIR)
was conducted using a JASCO 6700 spectrometer to identify functional groups in both CQDs
and N-CQDs. UV–visible spectrophotometry (UV–Vis-Xplorer) was used to examine absorption
spectra across the 200-800 nm range. PL spectroscopy and lifetime measurements were performed
using a FLS 1000, Edinburgh fluorescence spectrophotometer to evaluate their photoluminescent
properties.

3. Results and discussion

3.1. Morphological analysis of the CQDs and N-CQDs
Figure 2 presents TEM images of CQDs and HRTEM images of N-CQDs, illustrating their

spherical nanoparticle morphology with uniform distribution and no agglomeration. The size
distribution of CQDs ranges from 2 to 10 nm, averaging approximately 5.7 nm, while N-CQDs
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Fig. 1. Schematic of the N-doped CQD synthesis process.

range from 2 to 8.2 nm, averaging about 5.8 nm (see insets in Fig. 2a and 2b). HRTEM images
of N-CQDs show clear lattice fringes, with an inset revealing stripe-like structures and a lattice
spacing of 0.23 nm, indicative of a graphite-like structure similar to the (100) diffraction facet of
graphitic carbon [22].

Fig. 2. (a) TEM images of the CQDs (inset: size distribution); (b) HRTEM images of the
N-CQDs (inset: size distribution (left side)) and lattice fringes (right side).
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3.2. FTIR spectroscopy
To identify functionalization, FTIR spectroscopy was applied to analyze synthesized CQDs

and N-CQDs. In Figure 3, CQDs exhibit characteristic absorption peaks at 2974 cm-1 and 902 cm-1

(C-H stretching), 1353 cm-1 (C=O), and 1215 cm-1 (C-O). Both CQDs and N-CQDs show a peak at
1707 cm-1, indicating unsaturated C=C bonds consistent with the literature [20,21]. The N-CQDs
spectrum displays distinctive peaks at 1468 cm-1 (C-N stretching) and bands between 902 cm-1

and 3257 cm-1, indicating N-H bending and heterocyclic C-N-C bond stretching vibrations at
1148 cm-1 and 1177 cm-1 [17, 22]. Reduced C-O stretching at 1215 cm-1 and enhanced C-N
vibrations at 1468 cm-1 confirm the successful incorporation of N-containing groups via chemical
reaction, likely involving ethylenediamine and microcrystalline cellulose [17, 18]. This illustrates
the efficient doping of nitrogen species into the CQDs structure.

Fig. 3. FTIR spectra of CQDs and N-CQDs.

3.3. Optical properties of the CQDs and N-CQDs
The UV-Vis absorption spectra of both CQDs and N-CQDs exhibit absorption bands in

the ultraviolet region, attributed to the aromatic π-system (Fig. 4a). The main peaks are ob-
served around 280 nm, with an additional shoulder peak near 350 nm, which correspond to π–
π* transitions within sp2 domains and n− π∗ transitions involving surface bonds such as C=O,
C–N, and C=N [17, 20]. Notably, N-CQDs show a shift towards longer wavelengths compared
to undoped CQDs, indicating enhanced electronic interactions likely due to nitrogen incorpora-
tion. This change suggests the introduction of additional electronic states or an increased density
of states contributed by nitrogen doping. The Tauc plots, presented in Figure 4b, reveal direct
bandgap values of Eg = 4.18 eV for CQDs and Eg = 4.05 eV for N-CQDs, highlighting alterations
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Fig. 4. (a) UV–Vis absorption spectra and (b) Tauc plots of the CQDs and N-CQDs.

in the optical and electronic properties induced by nitrogen doping. Graphitic nitrogen and surface
nitrogen atoms contain lone pairs of electrons, which contribute to a positive charge by donating
electrons to the carbon structure. This electron donation increases the electron density, leading to a
reduction in the bandgap. As a result, the electronic structure of the N-CQDs and their absorption
tails are influenced by charge transfer and frontier orbital hybridization between the carbon core
and surface functional groups [18].

The PL spectra with an excitation wavelength of 410 nm show a distinct difference between
the CQDs and N-CQDs aqueous solutions as depicted in Figure 5a, the fluorescence emission in-
tensity of N-CQDs is not only stronger than that of the CQDs at the same concentration but a
blue shift in the maximum PL wavelength is also observed. This enhancement can be attrib-
uted to a reduction in non-radiative recombination centers on the N-CQDs surface [32]. The PL
spectra of both CQDs and N-CQDs were measured at excitation wavelengths ranging from 390
to 490 nm in 10 nm increments, as depicted in Figures 5b and 5c. Each sample demonstrated
excitation-dependent emission behavior, advantageous for applications like biosensors, bioimag-
ing, and LED devices. Emission peaks varied with excitation wavelengths, suggesting unique
optimal conditions for each sample. Overall, the PL study underscored the intriguing optical
properties of N-CQDs. The results affirmed previous findings of excitation-dependent emission
in CQDs [33, 34]. At an excitation wavelength of 420 nm, CQDs exhibit a maximum emission at
508 nm (Fig. 5b), while N-CQDs show a maximum at 513 nm (Fig. 5c). The PL intensity for
both types of quantum dots increases from 390 to 420 nm but then gradually decreases as the ex-
citation wavelength shifts from 430 to 490 nm. This behavior is attributed to the electronegativity
of heteroatoms, quantum confinement effects, and the presence of surface traps on the CQDs. The
excitation-dependent emissions are mainly due to the different functional groups, such as nitrogen
and oxygen, present on the surface of N-CQDs, which provide various emissive sites. However,
the exact mechanisms behind these properties remain unclear. The quantum confinement effect
is commonly cited, linked to CQDs' broad particle size distribution influencing energy gaps and
emission wavelengths [19, 34]. HRTEM analysis indicated that increased nitrogen doping did not
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Fig. 5. (a) PL spectra of the CQDs and N-CQDs under maximum excitation at 410 nm
and emission spectra of the (b) CQDs and (c) N-CQDs under different excitation wave-
lengths.

alter particle size, suggesting the redshift in emission arises from radiative recombination within
sp² clusters rather than the size effect [17]. Surface state theory was also considered, supported
by UV–Vis absorbance showing a peak at 265 nm, indicative of π −π⋆ transitions and significant
π-electron presence. Surface oxidation potentially interacts with these π-electrons with surface
electronic states, modifying N-CQDs' electronic structure [17].

The photoluminescence lifetimes and quantum yields of both CQDs and N-CQDs were
meticulously measured to delve into their photoluminescence characteristics. The decay curves
are adeptly fitted using a multiexponential function. This approach facilitates a comprehensive
analysis of the decay dynamics, capturing multiple contributing factors to the fluorescence decay
process [35].

I(t) = A1 exp(−t/τ1)+A2 exp(−t/τ2), (1)

where A1, A2 represent the amplitudes, while τ1, τ2 represent the time constants associated with
each exponential component. This multiexponential fitting approach augments our understand-
ing of the intricate fluorescence decay kinetics of CQDs, providing insights into the underlying
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Fig. 6. Photoluminescence lifetimes of CQDs and N-CQDs.

processes governing their temporal behavior. The average lifetime (τavg) is calculated by the fol-
lowing τavg = (A1τ2

1
+A2τ2

2 )/(A1τ1 +A1τ1). The results presented in Table 1 indicate a notable
enhancement in both PL lifetime and PLQY with the introduction of nitrogen doping. Specifically,
N-CQDs exhibited a significantly higher photoluminescence quantum yield (PLQY) of 33.09%
compared to 22.71% for CQDs, as shown in Table 1. The PLQY of N-CQDs was also com-
pared with those reported in other publications. These findings underscore the efficacy of nitrogen
doping in improving the efficiency of photoluminescence in the synthesized N-CQDs, thereby
enhancing their potential for applications in optoelectronic devices and other photonics-related
fields.

Table 1. A significant reduction in nonradiative rates was observed in CQDs and N-CQDs.

Samples A1 A2 τ1 τ2 τavg PLQY Radiative Nonradiative
(%) kr (ns-1) knr (ns-1)

CQDs 0.53 0.69 0.76 3.39 3.00 22.71 0.076 0.105
33.09
33a

N-CQDs 0.34 0.70 0.65 3.37 3.14 13b 0.257 0.212
14.21c

14.0d

9.6e

a [17]; b [32]; c [20]; d [36]; e [37]

The radiative rate (kr) and nonradiative rate (knr) were determined using Eqs. (2) and
(3) [18]:

kr =
Φ

τ
, (2)
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knr =
1−Φ

τ
, (3)

where Φ represents the PLQY of the samples and τ is the lifetime at which the fluorescence
diminishes to 1/e of its initial value.

The significant reduction in nonradiative rates observed in N-CQDs, as depicted in Table 1
and Fig. 6, highlights their enhanced PL performance. This decrease indicates that fewer excited
states decay non-radiatively, resulting in a higher photoluminescence quantum yield (PLQY). The
presence of nitrogen functional groups on the N-CQDs surface is pivotal as they effectively pas-
sivate surface defects, thereby boosting radiative recombination efficiency. The nanosecond-scale
PL lifetime observed further validates this efficient radiative recombination process, which is cru-
cial for applications requiring prolonged emission and superior PLQY [18, 20, 21].

4. Conclusion

We successfully synthesized N-CQDs via a plasma process using acetone as the carbon
source and ammonia for nitrogen doping. These N-CQDs demonstrated excellent optical proper-
ties, achieving a high photoluminescence quantum yield of approximately 33.09%. The UV-Vis
spectra revealed a redshifted absorption peak in the N-CQDs, indicating enhanced electronic in-
teractions and a reduced bandgap (4.05 eV) compared to undoped CQDs (4.18 eV). Fluorescence
lifetime studies confirmed that the reduced nonradiative recombination rates are due to surface
passivation and the inner filter effect. This study presents a rapid, single-step, and environmen-
tally friendly approach for synthesizing high-performance carbon-based nanomaterials, offering
significant potential for applications in optoelectronics, bioimaging and sensing.
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