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Abstract. We study the interlayer distance d effect on the electrical conductivity 61,0,,03 of a
three-layer monolayer graphene system (3MLG) made of parallel-placed monolayer graphene
layers at T=0 K by two methods: the first based on the relation between the impurity - electron ef-
fective interactions Wy (d),Was(d),Ws3(d) and ©1(d),02(d), 03(d); the second being traditional
calculations. We pay attention to the first method consisting of three steps. In the first step, we cal-
culate W1, Way, Ws3 by using the multi-component random phase approximation (M-RPA). In the
second step, we define the dependence of W1, Wao, Was on interlayer distance d, dielectric constant
£€1,8,83, &, and temperature T in the case of a 3IMLG system. In the third step, we identify the
proportional relations between Wy (d),War(d),Wa3(d) and ©1(d),02(d), 03(d) which were done
in the framework of the semiclassical Boltzmann theory and the relaxation time approximation.
Based on the obtained results, we deduce the rules of change of o1, 06,03 when d varies which
after that, are checked by the second method.

Keywords: correlated impurities; monolayer graphene (MLG); double-layer systems; multi ran-
dom phase approximation.

Classification numbers: 73.20.Hb; 73.21.Ac; 73.22.Pr.

This is an extended version of the talk presented at the 49th Vietnam Conference on Theoretical Physics, Hue,
Vietnam (2024).


https://doi.org/10.15625/0868-3166/21634

236 A qualitative investigation of electrical conductivity in three-layer graphene structures

1. Introduction

After monolayer graphene was isolated in 2004 by Andre Geim and Kostya Novoselov
[1,2], many authors have investigated multilayer [3—6] and N-layer [7-23] graphene structures.
Among these studies, transport properties such as electrical conductivity, thermopower, ... have
attracted considerable theoretical and experimental attention [7—17]. In theoretical studies of trans-
port, the semiclassical Boltzmann transport framework combined with the relaxation-time approx-
imation (RTA) is a widely used approach. Within this formalism, the evaluation of transport coef-
ficients typically reduces to integrals of the form [24]
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IalT) = &5 [ oo (60 (B T (B — (1) (52, m

(27)?
where e is the elementary charge, g is the spin—valley degeneracy factor, k is the two-dimensional
(2D) wave vector, vk is the group velocity of carriers, é is the unit vector along the applied electric

field, T(Ey,T) denotes the energy- and temperature-dependent relaxation time, Ey is the carrier
energy, W (T) is the temperature-dependent chemical potential, & is an integer index characterizing
the transport moment, and f is the Fermi—Dirac distribution function. The derivative _—if acts as
a thermal broadening function, sharply peaked at the Fermi level for low temperatures.

The direct numerical computation of I (7) can be challenging, especially for multilayer and N-
layer graphene systems. While monolayer, bilayer, and double-layer graphene systems have been
studied extensively within this framework, there is, to the best of our knowledge, no prior work
addressing the electrical conductivity of three-layer monolayer graphene (3MLG) structures.
Motivated by these considerations, in this paper we propose a three-step method to qualitatively
study the electrical conductivity, which we apply to a three-layer monolayer graphene system. In
particular, we investigate the dependence of the conductivities of the first, second, and third layers,

01,0 and o3 on the interlayer distance d at T = 0 K.

2. Methodology

We consider 3MLG structures, shown in Fig.1, composed of three doped MLG. Three lay-
ers are electrically isolated via two isolating spacers of thickness d [6]. We also assume that
charged impurities are located only in the first (or the second, or the third) layer. In these systems,
the qualitative study of electrical conductivity is carried out in three steps.

2.1. Step 1: Calculate impurity-electron effective interactions W, W,,,Ws3 using the multi-
component random phase approximation (M-RPA)

Random phase approximation is an approximation for microscopic quantum mechanical
interactions between electrons in matter. It accounts for the screening effect on the impurity-
electron Coulomb potential, which is expressed as

W = (1 = VyareITp) "1V, = ¢~ Tyimp 2)

bare — bare’

where W(Vbi%) is the screened (unscreened) impurity-electron interaction, V. is the unscreened
electron-electron interaction, Iy is the irreducible polarization function, and e is the dielectric
function. W is referred to as the effective interaction between impurity-electron. In the case of the
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Fig. 1. A three-layer monolayer graphene immersed in an inhomogeneous dielectric environment

multi-component random phase approximation, Eq. (2) is still correct; however, W, Vé;"rﬁ, Viare, o
are four matrices. _

For three-layer monolayer systems, W, VéZ;’;,Vbare and Iy are square matrices of order 3. As
considering charged impurities located only in the studied layer, the effective interaction in this
layer takes the form

_ Vii— H(Z) (V] 1Voo — V122) — Hg (V] 1V33 — V321) + Hgngdel(vbare)

Wi det (1 — VyareI10) ’ )

Wy — Voo — H?(V11V22 -V3)— Hg(V22V33 — V223) + H?Hgdet(vbwe) @
061 (1 — VeI ’

Wis = Vi3 — H(]) (V11 Va3 — V123) — Hg (VaaVa3 — V223) + H?Hgdet(vbare) ‘ 5)

det(l — meHO)

Here I19(IT9 or Hg) is the irreducible polarization function of the first (second or third) monolayer
graphene, Vi1,V and Vi3 are intralayer unscreened electron-electron interactions on the first,

second and third monolayer graphene, V;;(i,j = 1,...,3 and i # j is the interlayer unscreened
electron-electron interaction, and
detVyare = Vi1 V2 Va3 +2ViaVasVs1 — Var Vi3 — Vi1 Vis — Va3V, (6)

det(1 — Vg IT') =1 — I3 det Vg + T (T3 (V1 Vaz — VE) — V1)
+ I (TT) (Vi1 Vaz — V3)) — Vao) + TIS(TT9 (Vaa Vs — Vi) — Vs3).

2.2. Step 2: Study how Wy ,W,, and W33 depend on the interlayer distance d in a three-layer
monolayer graphene

(N

The relationship between Wy /Wy, /Ws3 and d is determined by form of the Vj,,, matrix.
In the case of inhomogeneous 3MLG structures, nine elements of this matrix can be derived from
Poisson equation and expressed as [6]

2me?
Vij= Tfija (3)
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where
20+ 23) (6 — xa) + 22302 — 23)€* + (2 + 23) (23 + xa) ™|
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fi3(q) = f31(q) = M(gd) (13)
8x3¢*%[yacosh(qd) + x1sinh(qd)]
32(q) = f23(q) = : (14)
52(9) = f23(q) M(qd)
with
M(x) = (x1 —x2)(x2 +x3) (x3 — x4) + 2% (x2 — x3) (13 — x2x4) + ¥ (01 4+ x2) (X2 +x3) (X3 +x4).
(15)
For a monolayer graphene, I1(¢g, 7 = 0 K) us given as [6,9]
1 q < 2kp (16)
(¢, T =0K) =Dy ng 1 4% g 2kp
I+ — [ 1——=F - L gin (&= > 2kp. 17
TRk 2 2 gt () gz A7)
Here, Dy = %,EF = hvpkr,kr = «/7n and n are the density of states at the Fermi energy,

Fermi energy, Fermi wave-vector, and electron density, respectively.
2.3. Step 3: Identify proportional relations between W (d)(Way(d) or W33(d)) and o,(d)(0,(d)
or 03(d)) using the semiclassical Boltzmann theory and the relaxation time approximation

The conductivity of the ith MLG within the semiclassical Boltzmann approach and the
relaxation time approximation is given by [24]
2,2
eV, [ 0
o= S h / dED/(E)5(E,T)(- 2Ly, (18)
2 0 ot
Here, D;(E),vr,, 7; are the density of states, the Fermi velocity, the relaxation time of the mono-
layer graphene i.

When 7 =0 K:
&2 2EF,'TI'(EF T=0 K)

L — ) ) 1
o= h ! (19)

where 7;(Erp,T = 0 K) is given as

1 niiDo; (% dg ¢ q ,

== b ooz (g Wi, T =0K 20
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From (19) and (20), we see that

o; ~ T(Ep,T =0K) ~ [Wi(q,T =0K)| > 1)
Therefore, the dependence of [Wj;|? on the interlayer distance d will deduce the information of the
d dependence electrical conductivity o;.

3. Result and Discussion

Firstly, we present numerical results for W2, (¢), Wi (q), Wi (q) at T =0 K with n;y /npp /niz =
10" ecm™2, and d = Inm, d = 3nm, d = 10nm, d = 20nm for some values of (x1, X2, X3, X4). After
that, we derive the dependence of 01,0,,03 on d. Finally, we confirm the obtained results by
showing the d—dependent conductivity values table.

3.1. The results of the dependence of W7 (q), W5 (q), and W (q) on d
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Fig. 2. The electron-impurity interaction potential is a function of ¢ at 7 = 0 K when
xn=x=x=xi=1L
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Fig. 3. The electron-impurity interaction potential is a function of ¢ at T = 0 K when
X1=X2=X3=X4=0.1

The dependence of W121 , W222, and W333 on (q/kr) for four values of d are show in Figs. 2,
3 and 4. The first two figures are cases of homogeneous dielectric environments and the last is
for nonhomogeneous. In Fig. 2 (Fig. 3), we observe that W7 (q), Wi (g), and Wi3(q) increase
with increasing d. Based on these quantities, we predict that 67,0, and o3 will decrease when d
increase. Besides, the value of W121 is similar to W323(hence, o) is equal to 03). We also find that
when W121 is greater than W222, 0> is smaller than o;.
In Figs. 2 and 3, we see that le1 , W222 and W323 decrease with increasing ()1, X2, X3, X4)- Therefore,
we predict that when dielectric constants of the homogeneous environment increase, the electrical
conductivity of the first, second and third layers shall increase too.
Finally, in Fig. 4, we see that W121’ W222, and W323 decrease with decreasing d for ()1 > o > x3 >
x4), Consequently, these results deduce that 61 (d), 02(d) and 03(d) are three decreasing functions.
Moreover, when d is very large, W323 > W222 > W121 deduce to 03 < 0> < 07. However, the value of
W2 (W2) is the largest(smallest) for d = 1 nm.
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Fig. 4. The electron-impurity interaction potential is a function of ¢ at 7 = 0 K when
x1=12.53, p =6.1, x3=3.9, x4 = 1.

3.2. Verification with value of c,(d), 62(d), 03(d)

In Table 1, we show the dependence of electrical conductivity ¢ on the distance d between
the layers with different values of (1, X2, X3, X4). We show that 61, 0>, 03 decrease with increasing
d(x1,x2, X3, X4). These results are consistent with the subsection 3.1.

4. Conclusion

In conclusion, we have presented M-RPA and the proportional relation method applied to
the three-layer graphene system. We find that the W? is dependent on the interlayer distance d
that shows the influence of d on the 3MLG electrical conductivity. For a homogeneous dielectric
environment W7, is equal to W (hence, oy is equal to 03) and W7 > W2 (therefore, 61 < 0,). Be-
sides, Wi?(c,-) increases (decreases) enormously with increasing environment dielectric constant.
Finally, in the case of a nonhomogeneous dielectric environment, when 1 > 2 > x3 > x4, W?(0)
is the increasing(decreasing) function of d. Therefore, we have also calculated the conductivity
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Table 1. The dependence of electrical conductivities oy, 0, and 03 on the distance d
between the layers for three different dielectric configurations: (Y1 =2 =x3=xa=1),
(x1=x=x3=x4=6.1),and (x1 =12.53, 1 =6.1, x3=3.9, xa=1)

T =0K o1 (e*/h) o, (e*/h) o3 (¢*/h)

d = 1nm 29.2 (100.6, 119.6)  37.1 (128.8, 50.9) 29.2 (100.6, 53.9)

d =3nm 23.16 (68.71,97.65) 24.81(78.58,51.76) 23.16 (68.71, 35.81)
d=10nm 21.62(58.24, 88.02) 21.71 (59.18,48.96) 21.62 (58.24, 30.63)
d=20nm 21.54 (57.37,86.94) 21.55(57.51,48.45) 21.54(57.37,30.29)
d =100nm 21.53(57.23,86.73) 21.53(57.23,48.36) 21.53(57.23, 30.25)

qualitatively without using the formula in [18], the information of the effective interaction poten-
tial W, W5, W between impurities and electrons. The rules for changing W2, W5, and W, allow
us to predict how o1, 6, and 63 depend on d, Y1, X2, X3 and X4.
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