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Abstract. We study the interlayer distance d effect on the electrical conductivity σ1,σ2,σ3 of a
three-layer monolayer graphene system (3MLG) made of parallel-placed monolayer graphene
layers at T=0 K by two methods: the first based on the relation between the impurity - electron ef-
fective interactions W11(d),W22(d),W33(d) and σ1(d),σ2(d),σ3(d); the second being traditional
calculations. We pay attention to the first method consisting of three steps. In the first step, we cal-
culate W11,W22,W33 by using the multi-component random phase approximation (M-RPA). In the
second step, we define the dependence of W11,W22,W33 on interlayer distance d, dielectric constant
ε1,ε2,ε3,ε4, and temperature T in the case of a 3MLG system. In the third step, we identify the
proportional relations between W11(d),W22(d),W33(d) and σ1(d),σ2(d),σ3(d) which were done
in the framework of the semiclassical Boltzmann theory and the relaxation time approximation.
Based on the obtained results, we deduce the rules of change of σ1,σ2,σ3 when d varies which
after that, are checked by the second method.
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1. Introduction

After monolayer graphene was isolated in 2004 by Andre Geim and Kostya Novoselov
[1, 2], many authors have investigated multilayer [3–6] and N-layer [7–23] graphene structures.
Among these studies, transport properties such as electrical conductivity, thermopower, ... have
attracted considerable theoretical and experimental attention [7–17]. In theoretical studies of trans-
port, the semiclassical Boltzmann transport framework combined with the relaxation-time approx-
imation (RTA) is a widely used approach. Within this formalism, the evaluation of transport coef-
ficients typically reduces to integrals of the form [24]

Iα(T ) = e2g
∫ d⃗k

(2π)2 (ê⃗v⃗k)
2
τ(E⃗k,T )(E⃗k −µ(T ))α(

−∂ f
∂E

), (1)

where e is the elementary charge, g is the spin–valley degeneracy factor, k⃗ is the two-dimensional
(2D) wave vector, v⃗⃗k is the group velocity of carriers, ê is the unit vector along the applied electric
field, τ(E⃗k,T ) denotes the energy- and temperature-dependent relaxation time, E⃗k is the carrier
energy, µ(T ) is the temperature-dependent chemical potential, α is an integer index characterizing
the transport moment, and f is the Fermi–Dirac distribution function. The derivative −∂ f

∂E acts as
a thermal broadening function, sharply peaked at the Fermi level for low temperatures.
The direct numerical computation of Iα(T ) can be challenging, especially for multilayer and N-
layer graphene systems. While monolayer, bilayer, and double-layer graphene systems have been
studied extensively within this framework, there is, to the best of our knowledge, no prior work
addressing the electrical conductivity of three-layer monolayer graphene (3MLG) structures.
Motivated by these considerations, in this paper we propose a three-step method to qualitatively
study the electrical conductivity, which we apply to a three-layer monolayer graphene system. In
particular, we investigate the dependence of the conductivities of the first, second, and third layers,
σ1,σ2 and σ3 on the interlayer distance d at T = 0 K.

2. Methodology

We consider 3MLG structures, shown in Fig.1, composed of three doped MLG. Three lay-
ers are electrically isolated via two isolating spacers of thickness d [6]. We also assume that
charged impurities are located only in the first (or the second, or the third) layer. In these systems,
the qualitative study of electrical conductivity is carried out in three steps.

2.1. Step 1: Calculate impurity-electron effective interactions W11,W22,W33 using the multi-
component random phase approximation (M-RPA)

Random phase approximation is an approximation for microscopic quantum mechanical
interactions between electrons in matter. It accounts for the screening effect on the impurity-
electron Coulomb potential, which is expressed as

W = (1−VbareΠ0)
−1V imp

bare = ϵ−1V imp
bare, (2)

where W (V imp
bare) is the screened (unscreened) impurity-electron interaction, Vbare is the unscreened

electron-electron interaction, Π0 is the irreducible polarization function, and ϵ is the dielectric
function. W is referred to as the effective interaction between impurity-electron. In the case of the
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Fig. 1. A three-layer monolayer graphene immersed in an inhomogeneous dielectric environment

multi-component random phase approximation, Eq. (2) is still correct; however, W,V imp
bare,Vbare,Π0

are four matrices.
For three-layer monolayer systems, W,V imp

bare,Vbare and Π0 are square matrices of order 3. As
considering charged impurities located only in the studied layer, the effective interaction in this
layer takes the form

W11 =
V11 −Π0

2(V11V22 −V 2
12)−Π0

3(V11V33 −V 2
31)+Π0

2Π0
3det(Vbare)

det(1−VbareΠ0)
, (3)

W22 =
V22 −Π0

1(V11V22 −V 2
12)−Π0

3(V22V33 −V 2
23)+Π0

1Π0
3det(Vbare)

det(1−VbareΠ0)
, (4)

W33 =
V33 −Π0

1(V11V33 −V 2
13)−Π0

2(V22V33 −V 2
23)+Π0

1Π0
2det(Vbare)

det(1−VbareΠ0)
. (5)

Here Π0
1(Π

0
2 or Π0

3) is the irreducible polarization function of the first (second or third) monolayer
graphene, V11,V22 and V33 are intralayer unscreened electron-electron interactions on the first,
second and third monolayer graphene, Vi j(i, j = 1, . . . ,3 and i ̸= j is the interlayer unscreened
electron-electron interaction, and

detVbare =V11V22V33 +2V12V23V31 −V22V 2
13 −V11V 2

23 −V33V 2
12, (6)

det(1−VbareΠ
0) =1−Π

0
1Π

0
2Π

0
3detVbare +Π

0
1(Π

0
3(V11V33 −V 2

13)−V11)

+Π
0
2(Π

0
1(V11V22 −V 2

21)−V22)+Π
0
3(Π

0
2(V22V33 −V 2

32)−V33).
(7)

2.2. Step 2: Study how W11,W22 and W33 depend on the interlayer distance d in a three-layer
monolayer graphene

The relationship between W11/W22/W33 and d is determined by form of the Vbare matrix.
In the case of inhomogeneous 3MLG structures, nine elements of this matrix can be derived from
Poisson equation and expressed as [6]

Vi j =
2πe2

q
fi j, (8)
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where

f11(q) =
2[(χ2 +χ3)(χ3 −χ4)+2χ3(χ2 −χ3)e2dq +(χ2 +χ3)(χ3 +χ4)e4qd ]

M(qd)
, (9)

f22(q) =
8e2qd [χ1cosh(qd)+χ2sinh(qd)][χ3cosh(qd)+χ4sinh(qd)]

M(qd)
, (10)

f33(q) =
2[(χ2 +χ3)(χ2 −χ1)+2χ2(χ3 −χ2)e2dq +(χ1 +χ2)(χ2 +χ3)e4qd ]

M(qd)
, (11)

f12(q) = f21(q) =
8χ2e2qd [χ3cosh(qd)+χ4sinh(qd)]

M(qd)
, (12)

f13(q) = f31(q) =
8χ2χ3e2qd

M(qd)
, (13)

f32(q) = f23(q) =
8χ3e2qd [χ2cosh(qd)+χ1sinh(qd)]

M(qd)
, (14)

with

M(x) = (x1 − x2)(x2 + x3)(x3 − x4)+2e2x(x2 − x3)(x1x3 − x2x4)+ e4x(x1 + x2)(x2 + x3)(x3 + x4).
(15)

For a monolayer graphene, Π(q,T = 0 K) us given as [6, 9]

Π(q,T = 0 K) =−D0


1 q ≤ 2kF (16)

1+
πq
8kF

− 1
2

√
1− 4k2

F
q2 − q

4kF
sin−1(

2kF

q
) q ≥ 2kF . (17)

Here, D0 = 2EF
π(h̄vF )2 ,EF = h̄vFkF ,kF =

√
πn and n are the density of states at the Fermi energy,

Fermi energy, Fermi wave-vector, and electron density, respectively.

2.3. Step 3: Identify proportional relations between W11(d)(W22(d) or W33(d)) and σ1(d)(σ2(d)
or σ3(d)) using the semiclassical Boltzmann theory and the relaxation time approximation

The conductivity of the ith MLG within the semiclassical Boltzmann approach and the
relaxation time approximation is given by [24]

σ =
e2v2

F,i

2

∫
∞

0
dEDi(E)τi(E,T )(−

∂ f
∂ t

). (18)

Here, Di(E),vF,i,τi are the density of states, the Fermi velocity, the relaxation time of the mono-
layer graphene i.
When T = 0 K:

σi =
e2

h
2EF,iτi(EF ,T = 0 K)

h̄
, (19)

where τi(EF ,T = 0 K) is given as

1
τi(EF ,T = 0 K)

=
nI,iD0,i

4h̄

∫ 2kF

0

dq
kF,i

q2

k2
F,i

√
1− (

q
2kF,i

)2|Wii(q,T = 0 K)|2 (20)
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From (19) and (20), we see that

σi ∼ τi(EF ,T = 0 K)∼ |Wii(q,T = 0 K)|−2 (21)

Therefore, the dependence of |Wii|2 on the interlayer distance d will deduce the information of the
d dependence electrical conductivity σi.

3. Result and Discussion

Firstly, we present numerical results for W 2
11(q), W 2

22(q), W 2
33(q) at T = 0 K with ni1/ni2/ni3 =

1011 cm−2, and d = 1nm, d = 3nm, d = 10nm, d = 20nm for some values of (χ1,χ2,χ3,χ4). After
that, we derive the dependence of σ1,σ2,σ3 on d. Finally, we confirm the obtained results by
showing the d−dependent conductivity values table.

3.1. The results of the dependence of W 2
11(q), W 2

22(q), and W 2
33(q) on d

Fig. 2. The electron-impurity interaction potential is a function of q at T = 0 K when
χ1 = χ2 = χ3 = χ4 = 1.
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Fig. 3. The electron-impurity interaction potential is a function of q at T = 0 K when
χ1 = χ2 = χ3 = χ4 = 6.1.

The dependence of W 2
11,W

2
22, and W 3

33 on (q/kF ) for four values of d are show in Figs. 2,
3 and 4. The first two figures are cases of homogeneous dielectric environments and the last is
for nonhomogeneous. In Fig. 2 (Fig. 3), we observe that W 2

11(q), W 2
22(q), and W 2

33(q) increase
with increasing d. Based on these quantities, we predict that σ1,σ2 and σ3 will decrease when d
increase. Besides, the value of W 2

11 is similar to W 2
33(hence, σ1 is equal to σ3). We also find that

when W 2
11 is greater than W 2

22,σ2 is smaller than σ1.
In Figs. 2 and 3, we see that W 2

11,W
2
22 and W 2

33 decrease with increasing (χ1,χ2,χ3,χ4). Therefore,
we predict that when dielectric constants of the homogeneous environment increase, the electrical
conductivity of the first, second and third layers shall increase too.
Finally, in Fig. 4, we see that W 2

11, W 2
22, and W 2

33 decrease with decreasing d for (χ1 > χ2 > χ3 >
χ4), Consequently, these results deduce that σ1(d),σ2(d) and σ3(d) are three decreasing functions.
Moreover, when d is very large, W 2

33 >W 2
22 >W 2

11 deduce to σ3 < σ2 < σ1. However, the value of
W 2

22(W
2
11) is the largest(smallest) for d = 1 nm.
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Fig. 4. The electron-impurity interaction potential is a function of q at T = 0 K when
χ1 = 12.53, χ2 = 6.1, χ3 = 3.9, χ4 = 1.

3.2. Verification with value of σ1(d), σ2(d), σ3(d)

In Table 1, we show the dependence of electrical conductivity σ on the distance d between
the layers with different values of (χ1,χ2,χ3,χ4). We show that σ1,σ2,σ3 decrease with increasing
d(χ1,χ2,χ3,χ4). These results are consistent with the subsection 3.1.

4. Conclusion

In conclusion, we have presented M-RPA and the proportional relation method applied to
the three-layer graphene system. We find that the W 2

ii is dependent on the interlayer distance d
that shows the influence of d on the 3MLG electrical conductivity. For a homogeneous dielectric
environment W 2

11 is equal to W 2
33 (hence, σ1 is equal to σ3) and W 2

11 >W 2
22 (therefore, σ1 < σ2). Be-

sides, W 2
ii (σi) increases (decreases) enormously with increasing environment dielectric constant.

Finally, in the case of a nonhomogeneous dielectric environment, when χ1 > χ2 > χ3 > χ4,W 2
ii (σ)

is the increasing(decreasing) function of d. Therefore, we have also calculated the conductivity
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Table 1. The dependence of electrical conductivities σ1, σ2, and σ3 on the distance d
between the layers for three different dielectric configurations: (χ1 = χ2 = χ3 = χ4 = 1),
(χ1 = χ2 = χ3 = χ4 = 6.1), and (χ1 = 12.53, χ2 = 6.1, χ3 = 3.9, χ4 = 1)

.

T = 0K σ1 (e2/h̄) σ2 (e2/h̄) σ3 (e2/h̄)

d = 1nm 29.2 (100.6, 119.6) 37.1 (128.8, 50.9) 29.2 (100.6, 53.9)
d = 3nm 23.16 (68.71, 97.65) 24.81 (78.58, 51.76) 23.16 (68.71, 35.81)
d = 10nm 21.62 (58.24, 88.02) 21.71 (59.18, 48.96) 21.62 (58.24, 30.63)
d = 20nm 21.54 (57.37, 86.94) 21.55 (57.51, 48.45) 21.54 (57.37, 30.29)
d = 100nm 21.53 (57.23, 86.73) 21.53 (57.23, 48.36) 21.53 (57.23, 30.25)

qualitatively without using the formula in [18], the information of the effective interaction poten-
tial W 2

11,W
2
22,W

2
33 between impurities and electrons. The rules for changing W 2

11,W
2
22 and W 2

33 allow
us to predict how σ1,σ2 and σ3 depend on d,χ1,χ2,χ3 and χ4.
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