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Abstract. We investigated the effects of mass imbalance on the metal-insulator phase diagram in
the half-filled ionic Hubbard model using dynamical mean field theory (DMFT) and the equations
of motion (EOM) method to solve the impurity problem. Our results show that the band insulator
region changes less significantly compared to the Mott insulator region, while the metallic region
shrinks as the mass imbalance increases. Additionally, the staggered charge density was calcu-
lated and analyzed for various values of mass imbalance, providing further insight into the critical
Coulomb interaction values that govern phase transitions.
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1. Introduction

Recent experiments using laser cooling techniques with ultracold atoms in optical lattices
have emerged as promising tools for investigating strongly correlated electron systems in con-
densed matter physics [1, 2]. Compared to traditional electron systems, ultracold gases offer
several advantages in terms of control and versatility. The interactions between atoms can be
finely tuned using Feshbach resonances [3, 4], enabling the observation of many-body phenom-
ena that range from non-interacting to strongly correlated regimes by adjusting the magnetic field.
Additionally, optical lattices can be constructed to have different potential minima across two sub-
lattices [5, 6]. Consequently, the ionic Hubbard model with a difference in site energy can be
generated. In addition, one can load two species of fermionic atoms (e.g., 6Li, 40K) within an
optical lattice [7–9] that correspond to the mass imbalance of two components in the ion Hubbard
model.

In 2019, Nguyen et al studied the ionic Hubbard model with mass imbalance using a two-
site DMFT approach as an impurity solver [10]. However, previous studies were only able to

https://doi.org/10.15625/0868-3166/22080


126 Effects of mass imbalance on metal-insulator transitions in the ionic Hubbard model

delineate the boundary between the metallic and Mott insulating regions, while the boundary of
the transition from the band insulator state to the metallic state occurred only at U = 0 for all val-
ues of the mass imbalanced parameter (r = t↓/t↑). In the normal ionic Hubbard model (r = 1), the
critical value of the Coulomb interaction U was found to be non-zero in both one-dimensional and
high-dimensional cases [11–14]. To further clarify the effect of mass imbalance on the transition
from band insulator to metal, we revisit the phase diagram of the ionic Hubbard model using an
alternative method to address the impurity problem. Specifically, we apply the DMFT with the
equations of motion (EOM) as the solver for the impurity problem. Although EOM is a relatively
simple method, it proves effective for complicated problems, particularly when approaches like
exact diagonalization (ED) or renormalization group theory (RG) demand substantial computa-
tional resources. In Section 2, we introduce the model and methods used for the bipartite lattice
fermion system. The impurity Green function is obtained from the equations of motion. Section 3
details the nonmagnetic phase diagram. This phase diagram is derived from the band gap around
the Fermi level of the density of states (DOS). Additionally, we illustrate the staggered charge den-
sity. The final section summarizes the conclusions of this study, indicating that the region of the
Mott insulator expands, the band insulator region undergoes negligible changes, and the metallic
region contracts as the mass imbalance increases.

2. Models and Methods

We begin with the Hamiltonian of the mass-imbalanced ionic Hubbard model

H =− ∑
i∈A, j∈B,<i j>σ

tσ
(

c†
iσ c jσ + c†

jσ ciσ

)
+ εA ∑

i∈A,σ
niσ + εB ∑

i∈B,σ
niσ

+U ∑
i

ni↑ni↓−∑
iσ

µσ niσ . (1)

on a bipartite lattice (two sublattices A and B). The index σ refers to the light (↑) and heavy
(↓) fermionic species, and they can be viewed as pseudo-spins of the particle. The first term is
the kinetic energy, tσ is the hopping parameter of the electron with pseudo-spin σ between two
nearest neighbor sites < i, j >. ciσ and c†

iσ are the annihilation and creation operators for the
electron at site i with pseudo-spin σ . The second and third terms are the energy of an electron on
each sublattice A and B. Here, we set εA = ∆ > 0, εB =−∆. niσ = c†

iσ ciσ is the occupation number
operator. Next term is the Coulomb interaction U at one site. The last term µσ is the chemical
potential. In this paper, we consider the half-filling case that means µ↑ = µ↓ =U/2, nA +nB = 2.

To find the phase diagram corresponding to Hamiltonian (1), we use the DMFT at the high-
dimensional limit. In the scheme of the DMFT, the problem of many bodies is to reduce a single
impurity that is embedded in a bath of non-interacting electrons corresponding to a self-consistent
field. The bipartite lattice leads to the following impurity Green function [15]

Gασ (ω) = Giiασ (ω) =
∫

∞

−∞

ξασ (ω)ρ0
σ (z)dz

ξAσ (ω)ξBσ (ω)− z2 , (2)

where α = A,B(α = B,A), ξασ = ω + µσ − εα −Σασ (ω) with Σασ is the local self - energy for
each sublattice α with pseudo-spin σ . The calculation is performed on the Bethe lattice of the
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infinity connective. The DOS of this lattice is given

ρ
0
σ (z) =

1
2πt2

σ

√
4t2

σ − z2. (3)

With the help of Eq. (3) we obtain the self-consistent condition of the form

ηασ (ω) = t2
σ Gασ (ω), (4)

G−1
0ασ

(ω) = ω +µα − εα +
U
2
−ηασ (ω). (5)

The impurity interacts with the electrons in the bath through the hybridization function ηασ (ω).
G0ασ is the non-interacting Green function of the effective impurity model for sublattice α . We
use the EOM as the impurity solver for this problem. Then, the impurity Green function can be
obtained as follows [16, 17]

Gασ (ω) =
1−< nασ > /2

G−1
0ασ

+UΠ1ασ (ω)[G−1
0ασ

−U −Π3ασ (ω)]−1

+
< nασ > /2

G−1
0ασ

−U −UΠ2ασ (ω)[G−1
0ασ

−Π3ασ (ω)]−1
, (6)

where the "self-energies" Πi are

Πiασ (ω) =
∫

∞

−∞

dzΓασ (z)Fi(z)
[

1
ω +µασ −µασ − z

+
1

ω +µασ +µασ −U + z

]
. (7)

Here, µασ = µσ −εα and F1 = f (z), F2 = 1− f (z), F3 = 1, f (z) = 1/(ez/T +1) is the Fermi-Dirac
function, Γασ (z) =− 1

π
Imηασ (z+ i0+).

Equations (2), (4)-(7) establish self-consistent equations for Gασ (ω) (α = A,B, σ =↑,↓).
These equations must be solved with the condition nA+nB = 2, where nα =− 1

π

∫ 0
−∞

dω ∑
σ

ImGασ (ω).

Therefrom one can derive critical insights into the electronic properties of the system based on the
pseudo-spin-dependent DOS ρασ (ω). nB − nA is the staggered charge density that can be calcu-
lated from the model parameters. A total DOS at the Fermi level is finite that indicates a metallic
behavior, while a vanishing DOS signal insulating properties.

3. Results and Discussions

In this framework, we study the paramagnetic case, i.e., < nα↑ >=< nα↓ >=< nα >/2 and
we set the half bandwidth with pseudo-spin-up D = 2t↑ as the unit of energy. The mass imbalance
parameter denotes r = t↓/t↑. We chose t↑ and t↓ as corresponding to the hoping parameter of
the heavy and light particles, respectively, that means 0 < r < 1. To investigate the influence of
mass imbalance on the phase diagram of the ionic Hubbard model, we fix the mass imbalance at
r = 0.5 and plot the density of states depend on pseudo-spin σ for the sublattices α (α = A,B)
for ∆ = 1.0 at U = 0.5,2.5, and 3.5 in Fig. 1. There are three phases in the phase diagram:
(1) a band insulator phase at weak interaction, (2) a Mott insulator phase at strong interaction,
and (3) a metallic intermediate phase between the two insulating phases. In the small U region
(U = 0.5), the system behaves as a band insulator with a gap around the band center (ω = 0) for
both sublattices. In contrast, in the larger U region (U = 3.5), the system corresponds to a Mott
insulator with a smaller gap around ω = 0, and there are two gaps in the pseudo-spin-dependent
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Fig. 1. (Color online) Density of states depend on pseudo-spin σ for the sublattices (α =
A,B) for ∆ = 1.0 at the mass imbalance r = 0.5. Top panel: a band insulator state for
U = 0.5; Center panel: a metallic state at U = 2.5; Bottom panel: a Mott insulator state
for U = 3.5.

DOS of both sublattices at ω ≈±2.0. The distinction between the two insulating phases is further
illustrated by the staggered charge density nB − nA. Additionally, nB − nA is approximately zero
(nB ≈ nA ≈ 1) for a Mott insulator state, while nB is greater than nA for a band insulator state. In
contrast, the pseudo-spin-dependent DOS at the Fermi level of both sublattices A and B is nonzero
for U = 2.5, corresponding to a metallic phase.

Next, we build the phase diagram to show the influence of the mass imbalance into the ionic
Hubbard model at half-filling, which includes various values of r = 1.0,0.5, and 0.1 as shown in
Fig. 2. This diagram comprises three phases: a correlated metal, a Mott insulator phase, and
a band insulator. We denote this phases are M, MI and BI, respectively. This phase diagram
resolves the limitations of the two-site DMFT for this model reported in our Ref. [10], which only
identified the Mott transition. There are two transitions in the phase diagram. As the Coulomb
interaction increases, the system transitions from a band insulator to a metallic phase first, and then
it undergoes a metal to a Mott insulator transition. The critical values Uc1 for the first transition
in the weak Coulomb interaction region for r = 1.0,0.5, and 0.1 can be determine as a function of
∆. The results show that Uc1 changes insignificantly and approximates 2∆ as decreasing the mass
imbalanced parameter r. In this region U ≪ 2∆, the charge density at site B (lower energy) is
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larger than at site A (higher energy), meaning both of two component pseudo-spins (up and down)
of electrons are primarily localized at site B, making the influence of the hopping integral for both
pseudo-spins very small compared to the staggered energy 2∆. In contrast, for fixed staggered
energy ∆ in a larger U region, the critical value of Coulomb interaction Uc2 for the second transition
from metal to Mott insulator decreases significantly as the mass imbalance increases. Physically
this situation can be imagine that for fixed t↑, the increasing mass difference between the two
pseudo-spin components means that t↓ is smaller, which makes it easier to localize the system.
These results show qualitative agreement with the findings obtained from the two-site DMFT
method in [10] (keep in mind that results in [10] using t↑ is a unit energy). However, the metallic
region in our current phase diagram is smaller than that found in the previous study [10] due to
the different approximations employed. This is not unusual; for example, the critical interaction
in the conventional Hubbard model (∆ = 0) Uc = D as obtained by CPA, while this value equals
1.8D by our EOM-DMFT, 2.4D by ED-DMFT, and 3.0D by two-site DMFT [18]. The metallic
phase represents an intermediate region between the two insulator phases. In the case of ∆ = 0, the
model becomes the asymmetric Hubbard model. The critical values Uc2 ≈ 1.80,1.38 and 1.12 for
r = 1.0,0.5 and 0.1, respectively, are similar to the results shown in Fig. 7 of D. A. Le’s paper [19],
and these results are consistent with Eq. (17) in A. T. Hoang’s paper [20], which corresponding to
the Hubbard III approximation.

Fig. 2. Phase diagram of IHM at mass imbalance case r = 0.5,0.1 compare to the mass
balance case r = 1.0. BI, M and MI denote a band insulator phase, a correlated metal and
a Mott insulator, respectively.



130 Effects of mass imbalance on metal-insulator transitions in the ionic Hubbard model

Fig. 3. pseudo-spin-dependent density of states for the sublattices (α = A,B) for ∆ =
0.5,U = 1.4 at the mass-imbalanced parameter r = 0.1 compared to the balanced case
r = 1.0. Upper panel for r = 0.1, system is a Mott insulator; Lower panel for the r = 1.0,
system is a metal.

To clarify the influence of mass imbalance in the strong Coulomb interaction region of
the phase diagram, we calculated the pseudo-spin-dependent density of states (DOS) for both
sublattices A and B at U = 2.7 for r = 0.1 (upper panel) and r = 1.0 (lower panel) with a fixed
∆ = 1.0 in Fig. 3. The system transitions from a metal state to a Mott insulator as the mass
imbalance parameter increases.

Finally, in Fig. 4, we present the difference of charge density of two sublattices (the stag-
gered charge density) nB−nA as a function of U for different values of r at ∆ = 1.0. The staggered
charge density decreases with increasing U and approaches zero as U approaches Uc2 at fixed r.
The critical values of Coulomb interaction Uc2 for the metal-to-Mott insulator transition at ∆ = 1.0
are obtained by extrapolation (see the dashed black arrow in Fig. 4), yielding approximate values
2.56, 2.66, 2.88, and 3.05 for r = 0.1,0.4,0.8, and 1.0, respectively. For the balance case r = 1.0
and ∆= 1.0, this results are in good agreement with those obtained from the full DMFT in [13,14],
and the two-site DMFT results in [10], bearing in mind that in [13,14], and [10], t is treated as the
unit of energy.

Notably, the value of nB − nA remains the same for all values of r at the U ≈ 2∆ point,
regardless of the mass imbalance parameter r. This point also corresponds to Uc1 for the band
insulator - metal transition. In Fig. 4, for ∆ = 1.0, Uc1 ≈ 1.9 is approximately equal to 2∆ for all
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r = 1.0,0.8,0.4 and 0.1. This consistency reinforces the influence of the mass imbalance parameter
on the critical Coulomb values Uc1 illustrated in Fig. 2.

Fig. 4. Staggered charge density nB −nA as a function of U for r = 0.1,0.4,0.8 and 1.0
at fixed ∆ = 1.0. The lines at difference values of r intersect at the same point, which is
corresponding to the first transition from a band insulator to a metallic state

.

4. Conclusions

In this paper, we used EOM within DMFT to explore the effects of mass imbalance on
metal-insulator transitions in the half-filled ionic Hubbard model. Similar to the balanced case
(r = 1) [13,14], we found that the critical Coulomb interaction (Uc2) for the metal to Mott insulator
transition decreases with increasing mass imbalance, while the critical interaction for the band
insulator to metal transition (Uc1) remains almost unchanged. The phase diagram reveals two
phase transitions: at fixed staggered energy ∆, the system transitions from a band insulator to
a metal as soon as Coulomb interaction is introduced, and then from a metallic state to a Mott
insulator as the interaction strength increases. We observed that the Mott insulator region expands
significantly with increasing mass imbalance, whereas the band insulator region remains relatively
unchanged, and the metallic region shrinks. The staggered charge density (nB − nA) provides a
reliable indicator for identifying critical interaction values Uc1 and Uc2 for the phase transitions.
Our findings extend previous studies and address limitations of simpler DMFT approaches [10],
providing a more detailed understanding of mass imbalance effects on the phase diagram of the
ionic Hubbard model.
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