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Abstract. Dynamics of microcantilevers are of importance in micro-mechanical systems to en-
hance the functionality and applicable range of the cantilevers in vibration transducing and highly
sensitive measurement. In this study, using the semi-classical Hamiltonian formalism, we study in
detail the modification of the mechanical frequency and damping rate taking into account both the
linear and quadratic coupling between the mechanical oscillator and the laser field in an opto-
mechanical system. We have shown that, the linear coupling greatly enhances the modification
of the effective mechanical frequency and the effective damping rate while the quadratic coupling
reduces these quantities. For a MHz-frequency oscillator, the damping rate could be 105 times
increased and the frequency is several times modified. These results help clarifying the origin of
the modification of the susceptibility function for cooling of the mechanical mode.
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1. Introduction

Light-matter coupling at macroscopic and mesoscopic scales has garnered significant inter-
est over the past two decades to elucidate quantum-to-classical physics. In the experiment for seek-
ing the gravitational waves from the universe, a test mass can be controlled to reveal the extremely
subtle impact of gravitational waves on Earth [1–4]. In the experiment for revealing the quantum-
to-classical transition, the pico-gram mass oscillators were used and their effective temperature
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could be reduced to the millikelvin range, where the phonon number approaches zero [5–8]. In
such systems, reducing the noise from environmental sources, the quantum properties of the driv-
ing light, or the mutual interaction between light and object is crucial. A system comprising two
mirrors that traps and amplifies an electromagnetic field (a laser) has proven highly effective in this
domain. When the distance between the two mirrors, the cavity length Lc, is close to a multiple of
the laser wavelength, a small change in the cavity length reduces the stored field and the radiation
force exerted on the mirror. As a result, the coupling between the mechanical and optical modes
is maintained.

Beside the setting where the linear optomechanical coupling exists, the system with second-
order coupling is also available for specific arrangement, for example, membranes (such as graphene
layer, semi-transparent thin film) inserted inside an optical cavity by Harris et al. [7, 9], Vitali et.
al. [10], Purdy et al. [11], Favero et al. [12, 13], and Weig et al. [14]. Locating at the anti-node of
the field intensity inside the optical cavity, the oscillator suffers to a second-order dependent cou-
pling to the field intensity. For a detailed discussion on the system settings and quadratic coupling
of these systems, the reader is referred to the work of Favero et al. [13]. The quadratic coupling
gives fruitful contribution to the cooling in optomechanics.

In this study, we examine the contribution of both the linear and the quadratic coupling on
the modification of the mechanical frequency and the damping rate of the oscillator in an optome-
chanical system. These two parameters are crucial in controlling of the dynamics of the oscillator
and any change of them could lead directly to the modification of the susceptibility function, the
function that determines the effective temperature and oscillating (mechanical) energy. Therefore,
a detailed study of the modification of the frequency and damping rate is of interest.

Laser

Fixed mirror Movable mirror

= mechanical 
oscillatora, a+ , λ, κ 

p, q, ωm, γm

gm

Fig. 1. The model of an optomechanical system. The optical cavity is formed by setting
two reflective mirrors made of metallic thin film. One mirror is fixed and the other is
movable. The movable mirror could be mounted on a singly or doubly clamped mechan-
ical cantilever and becomes a mechanical oscillator with a resonance frequency ωm, a
damping rate γm and the momentum[position] variable p[q]. The cavity is irradiated by a
laser beam of wavelength λ with the creation/annihilation operator a†/a, a decay rate κ .

The optomechanical system including an optical microcavity irradiated by a laser is shown
in Fig. 1. The first mirror is a semi-transparent thin film, and the second mirror plays the role of a
mechanical oscillator, which is movable and has a mechanical frequency of ωm, a decay/damping
rate of γm, and located at LC from the first mirror. The thicknesses of the two films were chosen
so that they could maximize the effect of the radiation pressure on the two inner surfaces [15–18].
The mirrors could be made of or coated by metallic thin films that is semi-transparent, i.e. a part
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of the light is transmitted and the other part is reflected. The thickness of the first mirror is usually
smaller than that of the second mirror. In a previous study [16], we have shown that the thickness
of the first mirror should range from 20–60 nm where that of the second mirror is 40–100 nm. The
cavity length LC is chosen so that it approximately equals to a number of the optical wavelength,
LC ≃ nλ/2 where n is an integer. A small displacement of the second mirror gives rise to a
reduction in the radiation pressure on it and increases the restoring force, which pulls the mirror
back to its initial position. This mutual action is represented by the couplings gm and g2. In this
study, the thicknesses are assumed to greatly enhance the mutual coupling between the laser light
and the mirrors, and is represented by the optomechanical couplings gm and g2.

2. Hamiltonian formalism for optomechanical oscillators

From the Hamiltonian of the mechanical oscillator, Hm = (1/2)(P2/m+mω2
mQ2) where P

and Q are the momentum and position variables, we make a variable change as p = P/
√

mh̄ωm

and q = Q
√

mωm/h̄ . The coupling between the optical and the mechanical mode is assumed to
involve the linear and quadratic [19–21] terms as

Hi =−h̄gma†aq+ h̄g2a†aq2, (1)

where gm = ∂ωc
∂x xZPF is the linear optomechanical coupling strength, and ∂ωc

∂x ≃ ωc
Lc

, which leads to

gm = ωc
Lc

xZPF where xZPF =
√

h̄
2ωmm is the zero point fluctuation [22], the quantity that estimates

the vibration amplitude of an oscillator when its effective temperature Te f f is in the order of a
quantum kBTe f f ≤ h̄ω . The optomechanical coupling Hamiltonian says that the coupling is lin-
early proportional to the stored laser intensity, ∝ a†a, and the small displacement q, and that in the
quadratic term is quadratic dependent on displacement, q2.

As a result, we obtain the total Hamiltonian (in the rotating frame of the pump laser with
frequency ωp = 2πc/λ ) where the laser has a power of Pi, an amplitude of ϵp = [Piκ/(2h̄ωp)]

1/2

[22], and a cavity damping rate of κ

H =h̄∆0a†a+
1
2

h̄ωm(p2 +q2)− h̄gma†aq+ h̄g†
2aq2 + ih̄ϵp(a† −a), (2)

where ∆0 =ωc−ωp and ωc = 2πc/Lc is the frequency of the photon mode inside the cavity. Using
the Heisenberg equations for the operators a, a†, q, and p, such as −ih̄ȧ = [a,H],

ȧ =−i∆0a+ igmaq− ig2aq2 + ϵp, (3a)

ȧ† = i∆0a† − igma†q+ ig2a†q2 + ϵp, (3b)

ṗ =−ωmq+gma†a−2g2a†aq, (3c)
q̇ = ωm p, (3d)

then adding the terms of noises and the dampings, we obtained the following equations,

ȧ =−(κ + i∆0)a+ igmaq− ig2aq2 + ϵp +
√

2κain, (4a)

ȧ† =−(κ − i∆0)a† − igma†q+ ig2a†q2 + ϵp +
√

2κa†
in, (4b)

ṗ =−γm p−ωmq+gma†a−2g2a†aq+ξ (t), q̇ = ωm p. (4c)
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The cavity mode is affected by the input noise from the vacuum radiation ain and the mechanical
mode is affected by the fluctuation ξ . They follow the correlation functions [23–26]

⟨ain(t)a
†
in(t

′)⟩= [N(ωc)+1]δ (t − t ′), (5a)

⟨a†
in(t)ain(t ′)⟩= N(ωc)δ (t − t ′), (5b)

⟨ain(t)ain(t ′)⟩= ⟨a†
in(t)a

†
in(t

′)⟩= 0, (5c)

⟨ξ (ω)ξ (ω ′)⟩= γm

ωm
ω
[

coth
(

h̄ω

2kBT

)
+1

]
δ (ω +ω

′), (5d)

where N is the two-photon correlation functions [24]. The steady state solutions as and qs are
obtained by setting the derivatives to zero, e. g. at ȧ = 0 we get as, at q̇ = 0 we get qs and we have

as =
ϵp

κ + i(∆0 −gmqs +g2q2
s )

a†
s =

ϵp

κ − i(∆0 −gmqs +g2q2
s )

qs = gm|as|2/(ωm +2g2|as|2), ps = 0.

(6)

To obtain the fluctuation spectra of the transmitted field, we linearize the quantum Langevin equa-
tion by writing the operators as the summation of their mean values, and the fluctuation opera-
tors [27], such as a = as +δa. We then keep the linear terms and skip all terms that is higher than
second order of fluctuations, such as δa2 or δaδq. Thus, we obtain,

δ ȧ =− (κ + i∆)δa+ iGaδq+
√

2κain, (7a)

δ ȧ† =− (κ − i∆)δa† − iG∗
aδq+

√
2κa†

in, (7b)

δ ṗ =− γmδ p− (ωm +2g2|as|2)δq+G∗
aδa+Gaδa† +ξ , (7c)

δ q̇ =ωmδ p, (7d)

where ∆= ∆0−gmqs+g2q2
s is the corrected detuning and Ga = (gm−2g2qs)as. Taking the Fourier

transform F [δ ȧ(t)]→−iωδa(ω), Eq. (7) could be rewritten in a matrix form as follow,
−iω +κ + i∆ 0 0 −iGa

0 −iω +κ − i∆ 0 iG∗
a

−G∗
a −Ga −iω + γm ωm +2g2|as|2

0 0 −ωm −iω




δa
δa†

δ p
δq

=


√

2κain√
2κa†

in
ξ

0

 . (8)

Assuming that the Routh-Hurwitz criterion for the parameters is satisfied, then Eq. (8) has solu-
tions [28]. From Eq. (6), we could choose the relative phase reference for the intracavity field and
the external laser so that as is real and positive, for example,

ϵp = |ϵ|e−iθ = |ϵ| κ + i(∆0 −gmqs +g2q2
s )√

κ2 +(∆0 −gmqs +g2q2
s )

2
,

we denote G∗
a = Ga = G as the reduced coupling strength. The solution of Eq. (8) is

δq(ω) =
−ωm

d(ω)

{[
∆

2 +(κ − iω)2]
ξ − iG

√
2κ

[
(ω + iκ −∆)a†

in +(ω + iκ +∆)ain
]}

, (9)

δ p(ω) =(−iω)(ωm)δq(ω), (10)
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and δa and δa† that are not shown here for brevity and because we are concentrating on the effect
of the opto-mechanical coupling on the phonon variance only. In Eqs. (9) and (10),

d(ω) = 2∆G2
ωm +[(ω + iκ)2 −∆

2][ωm(ωm +g2)−ω
2 − iωγm]. (11)

Dividing the denominator and numerator on the rhs. of Eq. (11) to Θ = (ω + iκ −∆)(ω + iκ +∆)

and letting let G2ωm
Θ

= Ξ, we obtain

dΘ(ω) =d(ω)/Θ = ω
2
m −ω

2 − iωγm +2∆Ξ = ω
2
m −ω

2 − iωγm +2∆(Re[Ξ]+ i.Im[Ξ])

=ω
2
e f f −ω

2 − iωγe f f . (12)

Finally, the effective mechanical frequency and the effective damping are written as

ω
2
e f f (ω) = ω

2
m +2∆.Re[Ξ] = ω

2
m +G2

ωm
2∆(ω2 −∆2 −κ2)

[(ω −∆)2 +κ2](ω +∆)2 +κ2]
, (13a)

γe f f (ω) = γm +2∆.Im[Ξ] = γm +G2
ωmκ

4∆

[(ω −∆)2 +κ2](ω +∆)2 +κ2]
. (13b)

We have obtained the analytical formula for the mechanical frequency and the damping
rate of the oscillator, which depend on the coupling strength G, the de-tuning ∆, and the linear and
quadratic couplings.

3. Results and Discussion

To present the results, we used these parameters: ωm = 2π×106 Hz is the mechanical
frequency, γm = 2π×260 Hz, m = 5 ng is the mass of the mechanical oscillator. The laser to
detune and drive the mechanical oscillator has a wavelength of λ = 1064 nm, a decay rate κ =
6π×106 Hz, and an input power Pi = 0.1–10 mW. This power Pi gives rise to ϵp in Eq. (2) and also
the steady-state values of as and qs in Eq. (6). As a result, the coupling strength Ga (or G) depends
on P. Solving Eq. (6) for as or qs, multiple solutions are obtained which implies the bistability of
the system, that is, there are three values of as for an input power Pi. In this study, we choose the
input power Pi so that the coupling G is within the range [0, Gm] where Gm is the maximum value
at which the oscillator starts to fall into the bistability region. For the quadratic coupling strength,
we limit our research in a qualitative regime where g2 is much smaller than G, g2 ∼ 10−3gm [21].
The maximum value of g2 is chosen to be 0.006Gm.

In Fig. 2(left), we present the change of the effective mechanical frequency versus the
optomechanical coupling strength G. We could see that ωe f f is significantly changed versus G.
For increasing G, ωe f f increases for ω > 1 and decreases for ω < 1. At ω = ωm, ωe f f = ωm. It is
worth noting that these modifications will directly change the susceptibility function χ(ω) of the
mechanical oscillator under the exertion of external noise, e.g. from the thermal noise. From the
equation of motion of the oscillator, the variance of the position could be expressed as

⟨x2(ω)⟩= χ(ω)Fnoise(ω), (14)

where Fnoise(ω) here denotes the total effects of external noise from both the photonic and bosonic
modes. As a result, the oscillation amplitude is modified. If one reduces the value of the function
χ(ω), the oscillator will reduce the effects from the environment and could be significantly cooled.
Karrai et al. [29] used such a mechanism to cool a microcantilever from room temperature to 18
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K using a milliwatt laser source. In the right panel, the effective mechanical damping rate γe f f is
shown. γe f f here is significantly increased, up to 105 times the original damping rate of several
tens of Hz. Adapting to the effective mechanical frequency, this enhanced damping contributes to
the modification of the susceptibility function.
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Fig. 2. (left) Normalized effective mechanical frequency ωe f f /ωm and (right) effective
damping rate γe f f /γm versus the reduced optomechanical coupling strength G. Based
on Eq. (13), ωe f f and γe f f are symmetric versus the origin and have extrema around
ωm ± ∆. Gm is the maximal coupling strength that the oscillator starts coming to the
bistability region. Great modifications of frequency and damping lead to changes in the
susceptibility function χ(ω) [see Eq. (14)], the mechanism of the passive laser cooling.

The coupling strength of the quadratic coupling is dependent on the system setting and is
ususlly in the order of 10−6–10−3 of the linear coupling. In the work of Xuereb and Paternostro
[30], g2 is chosen to be ≃ 2π×10 µHz while gm = 2π× 36 Hz for 1 MHz oscillator, i.e. g2/gm ≃
10−6 or He et al. [31] also used g2/gm ≃ 10−6, while Ghorbani et al. [21] used g2/gm ≃ 10−3.

In Fig. 3, contribution of the second-order coupling is estimated. As we could see, the
coupling g2 could lead to a decrease in the modification of the effective mechanical frequency
and the damping rate. This arises from the plus sign in the Hamiltonian term of the second-order
process [Eq. (2)]. The second-order process could arise as a higher term in the Maclaurin series of
the optomechanical interaction [28] or naturally arise in a specific setting up of the system where
the second-order process is excited; for example, the oscillator is inserted in the anti-node of an
empty optical microcavity [21, 32]. Nevertheless, the appearance of a membrane in the middle
of the empty cavity usually redistribute the field intensity inside the cavity. The vibration of the
oscillator is a complex superposition of multiple higher-order modes, where the amplitude of these
modes can be tuned for great amplification. We leave the study of this effect for future work.

4. Conclusion

In this study, we have investigated the modification of the mechanical frequency and damp-
ing rate in an optomechanical system using the semi-classical Hamiltonian formalism. By consid-
ering both linear and quadratic couplings between the mechanical oscillator and the laser field, we
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Fig. 3. (left) Normalized effective mechanical frequency ωe f f and (right) effective damp-
ing rate γe f f versus the quadratic coupling strength g2 for a fixed value of linear coupling
G. The frequency and damping rate have been reduced due to the plus sign, in contrast
to the minus sign, of the Hamiltonian term in the total Hamiltonian describing the opto-
mechanical coupling.

have shown that linear coupling significantly enhances the effective mechanical frequency shift
and damping rate, whereas quadratic coupling mitigates these effects. For a MHz-frequency oscil-
lator, the damping rate can be increased by a factor of 105, while the frequency experiences notable
modifications. These findings provide deeper insights into the role of optomechanical interactions
in tuning the susceptibility function, which is crucial for applications such as mechanical mode
cooling and precision measurements.
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