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Abstract. The effect of anisotropy on the first-order magnetic transition (FOMT) in the highly
anisotropic systems, such as perovskite manganite oxides, is investigated using Monte Carlo sim-
ulations of a two-dimensional (2D) spin S = 1 Blume-Capel model with random anisotropy. For
sufficiently large values of anisotropy probability p and corresponding amplitude D, the second-
order magnetic transition (SOMT) transforms into the FOMT. The presence of the FOMT is indi-
cated not only by a sharp discontinuity in the magnetic moment at the critical temperature T (1)

C , but
also by significant changes in the internal energy and magnetic moment histograms. As the type
of the phase transition changes, thermodynamic observables display distinctly different behav-
ior around T (1)

C . A phase diagram illustrating the SOMT-to-FOMT crossover induced by random
anisotropy in high-p regimes is successfully constructed.

Keywords: Blume-Capel model; random anisotropy; Monte Carlo simulation, first-order magnetic
transition.
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1. Introduction

The magnetocaloric effect (MCE) has attracted considerable research interest for its po-
tential to revolutionize heating and cooling technologies [1–3]. Materials that undergo a sharp
decline in magnetic moment at the Curie temperature, characteristic of a first-order magnetic tran-
sition (FOMT), are particularly promising for achieving a giant MCE [3–11]. Notably, several
perovskite manganite oxides, AMnO3, doped at both the A and B sites of ABO3, exhibit FOMT
and display significant changes in magnetic entropy under an external magnetic field, a hallmark
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of giant MCE [3, 12–17]. In these materials, the nature of the phase transition, whether it is a
continuous second-order magnetic transition (SOMT) or a discontinuous FOMT, is thought to be
influenced by single-ion magnetic anisotropy. This anisotropy arises from the random distribution
of multi-valent Mn ions and their associated magnetic moments [12–20].

The spin S = 1 Blume-Capel (BC) model is widely recognized as a fundamental theoretical
framework for studying FOMT induced by random anisotropy [21–23]. Within this model, our
recent work employing advanced Monte Carlo techniques successfully established a phase dia-
gram that illustrates how random anisotropy influences the nature of the phase transition. Unlike
effective field theory (EFT), which struggles with the presence of multiple local minima in the
free energy landscape [24], Monte Carlo methods are capable of overcoming this limitation. They
also provide two key indicators for identifying the transition type: the characteristic behavior of
the magnetic moment, and the distinct distribution patterns observed in the internal energy and
magnetic moment histograms. Building on the strengths of these methods, we continue to apply
them to explore the magnetic properties of perovskite manganite oxides under the influence of
random anisotropy.

In general, as observed in the perovskite manganite oxides mentioned above [3, 12–17],
FOMT occurs only at very low dopant concentrations, corresponding to highly anisotropic sys-
tems. In our recent work [25], we examined the influence of random anisotropy on FOMT and the
associated MCE for specific cases, without focusing on how variations in anisotropy amplitude af-
fect thermodynamic quantities. In this study, we specifically investigate thermodynamic behaviors,
including magnetic moment, internal energy, specific heat, and spin susceptibility, highlighting
their distinct responses to phase-transition type changes induced by different anisotropy ampli-
tudes in regimes of high anisotropy probability. Additionally, to confirm the phase-transition type
change and the position of the tri-critical point, we analyze internal energy and magnetic moment
histograms for both FOMT and SOMT. Based on the behavior of these thermodynamic quantities
around the phase-transition temperatures, we also construct a phase diagram in the TC−D plane,
illustrating the relationship between the critical temperature, anisotropy amplitude, and phase-
transition type.

The structure of this paper is as follows: Sec. 2 provides a concise overview of the model
and the computational approach. Sec. 3 delves into the Monte Carlo data analysis and presents the
results. Finally, Sec. 4 presents our conclusions.

2. Model and computational method

We consider a square spin-lattice of N = L×L sites, where each site has q= 4 nearest neigh-
bors, governed by the Blume-Capel model with random anisotropy (Fig. 1). The system is subject
to periodic boundary conditions in both directions and is defined by the following Hamiltonian:

HBC =−J ∑
〈i, j〉

Sz
i S

z
j +∑

j
D j(Sz

j)
2, (1)

where the variable Sz
i assuming values of ±1 or 0, corresponds to the z-component of a classical

spin S = 1 at site i. The first summation runs over all nearest-neighbor pairs 〈i, j〉, where the
exchange coupling J > 0 promotes ferromagnetic interactions. The random anisotropic field D j,
varying by site, follows a bimodal distribution [6, 25–28],

P(D j) = pδ (D j−D)+(1− p)δ (D j). (2)
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Here, the site-dependent anisotropic field adopts the value D with probability p or vanishes with
probability 1− p. In the subsequent part, a unit system is employed in which the physical quantities
D, internal energy E, and temperature T are expressed in a dimensionless form with units defined
by J = 1 and where the Boltzmann constant is taken as kB = 1. For example, the temperature τ ,
measured in Kelvin, is converted into its dimensionless form as T = kBτ/J.

Fig. 1. Schematic representation of the square spin lattice in the Blume-Capel model.

The cluster hybrid algorithm [29], which combines the Metropolis algorithm [30] and the
Wolff algorithm [31], is utilized to update the spin configuration. By integrating the Wolff cluster-
flipping process, this method mitigates the problem of critical slowing down while also facilitating
transitions between spin states of varying magnitudes through the Metropolis algorithm.

Linear system sizes of L = 16,32,64,128, and 200 are considered in this study. The system
is first equilibrated with the heat bath over 105 iterations, followed by 3× 105 additional itera-
tions to determine the average of the thermodynamic quantities. Each iteration comprises one
Metropolis sweep along with approximately r (r ∼ 5) Wolff steps.

Moreover, in order to enhance the efficiency of reaching stable thermal equilibrium and
assist the system in escaping local minima near the transition temperature, the parallel temper-
ing or replica exchange method [32] is applied. This technique improves the system’s capacity
to tunnel through entropic barriers by transferring fluctuations from higher-temperature states to
lower-temperature ones. As a result, the system’s behavior and transition temperatures can be
analyzed with greater accuracy.

Once the cluster hybrid algorithm determines the estimated transition temperature TC, we
arrange a set of NT = 40 temperatures, labeled as Ti, symmetrically around TC. These NT tempera-
ture replicas are simulated concurrently, with 105 swap attempts proposed during the process. The
exchange of neighboring replica configurations occurs if the swap acceptance criterion, defined as
P(βi⇔ βi+1) = min{1,exp(∆β∆E)}, is fulfilled. In this expression, ∆β = βi+1−βi represents the
difference between adjacent inverse temperatures, βi = 1/Ti, while ∆E = Ei+1−Ei corresponds to
the variation in internal energy. To determine the average thermodynamic quantities, 100 Monte
Carlo steps are executed between successive swaps. The thermodynamic quantities evaluated in-
clude [33]:
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Total internal energy per spin,

E =
〈H〉
N

, (3)

Magnetic moment per spin,

m =
〈∑N

i=1 Sz
i 〉

N
, (4)

Magnetic susceptibility per spin,

χ =
1

N2
〈(∑N

i=1 Sz
i )

2〉−〈∑N
i=1 Sz

i 〉2

T
, (5)

Specific heat,

CV =
1

N2
〈H2〉−〈H〉2

T 2 . (6)

To verify the correct physical behavior of the system, both configurational and statistical averages
of the aforementioned quantities are evaluated. For each temperature and system size, a minimum
of k = 10 configurational samples is generated. Consequently, each thermodynamic quantity O is
computed accordingly,

[〈O〉] = 1
k

k

∑
i=1
〈O〉i . (7)

Fig. 2. (Color online) Temperature dependence of (a) the magnetic moment and (b) the
specific heat for various system sizes. The parameters are set to p = 1 and D = 1.95.

Since finite-size effects in phase transition studies cannot be overlooked, it is necessary
to evaluate the reliability of simulations by modifying the system size N = L× L, as illustrated
in Fig. 2. For small system sizes, such as N = 16× 16 and N = 32× 32, a nonzero magnetic
moment is observed beyond the critical temperature, accompanied by a considerable shift in the
specific heat peak as the lattice size changes. This shift distinctly reflects finite-size effects in
statistical physics, since the system’s behavior deviates from the thermodynamic limit, where
critical phenomena are well-defined [34, 35]. For large system sizes, such as N = 128× 128 and
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N = 200× 200, no significant changes in magnetic moment behavior or the specific heat peak
position are caused by further lattice expansion. To maintain a balance between computational
efficiency and accuracy, simulations are subsequently performed with a lattice size of N = 128×
128, ensuring sufficient precision in determining physical properties and the critical temperature.

3. Results and discussion

Because we are primarily interested in the FOMT occurring in highly anisotropic systems,
we restrict our calculations to two values of the anisotropy probability: p = 1 and p = 0.9, with
D≤ 2.2. The case p = 1 corresponds to an anisotropic system without disorder, whereas disorder
is introduced in the p = 0.9 case. In this study, we do not consider the scenario p = 0.8, as it has
been thoroughly investigated in our previous work [25].

3.1. Case 1: FOMT without disorder (p = 1)

Fig. 3. (Color online) Thermodynamic quantities as functions of temperature for different
values of D at p = 1: (a) magnetic moment, (b) internal energy, (c) specific heat, and (d)
magnetic susceptibility. The inset in panel (a) displays the derivative dm/dT associated
with the main curves.
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First, we consider the original Blume-Capel model without disorder (p = 1), in which the
FOMT arises solely due to a sufficiently large anisotropy amplitude D, without requiring any
randomness. The temperature dependence of thermodynamic quantities, including (a) magnetic
moment, (b) internal energy, (c) specific heat, and (d) magnetic susceptibility for this case (p = 1)
with various values of the anisotropy parameter (D = 1.8, 1.9, 1.95, 1.96, 2.0) is shown in Fig. 3.

We begin by examining Fig. 3(a), which displays the temperature dependence of the mag-
netic moment. For a high anisotropy amplitude D = 2.0 = qJ

2p , which is the limit discussed in
our previous work [25], the magnetic moment vanishes (m = 0) across all temperatures, indicat-
ing the absence of a phase transition. This behavior can be attributed to the fact that when the
anisotropy energy exceeds the exchange interaction (pD≥ qJ

2 ), the system energetically favors the
non-magnetic transverse spin state Sz = 0, even at low temperatures.

When the anisotropy parameter is slightly reduced to the range 1.95≤D < 2.0, the FOMT
is observed. This transition is characterized by a steep fall in the magnetic moment from a finite
value to zero at the critical temperature T (1)

C , which corresponds to the Curie temperature of the
FOMT. For D = 1.95, this pronounced change occurs at T (1)

C = 0.66, as indicated by a sharp
downward spike in the temperature derivative of the magnetic moment, dm/dT , shown in the
inset of Fig. 3(a). As the anisotropy magnitude D is further reduced below 1.95, the sharp drop in
the magnetic moment becomes increasingly diffuse. This behavior reflects a shift from FOMT to
SOMT, accompanied by a rise in the critical temperature T (2)

C as D decreases from 1.9 to 1.8.
In the regime D < qJ

2p , where a phase transition occurs, the ground state (T ≈ 0) exhibits a
fully saturated magnetic moment (m = 1). This behavior arises because, in the absence of thermal
fluctuations, the exchange interaction dominates the anisotropy energy, causing all spins to align
parallel in the |Sz| = 1 state. Based on this reasoning, we employ a mean-field approximation
(MFA) to estimate the ground state energy:

E0 =−
qJ
2
+ pD. (8)

These MFA results are identical to those obtained from Monte Carlo simulations, as shown in the
inset of Fig. 3(b), where the ground-state energy E0 exhibits a linear dependence on D for a fixed
value of p.

The FOMT-to-SOMT transition is evident not only in the magnetic moment but also in the
behavior of the internal energy, specific heat, and spin susceptibility, as shown in Fig. 3(b),(c),(d),
where the peaks of specific heat and spin susceptibility occur at the corresponding critical temper-
atures. For D = 2.0, the internal energy changes smoothly with temperature, making it difficult
to determine whether a phase transition is present. In addition, the peaks in the specific heat and
spin susceptibility are broad and shallow, suggesting that they are resulted from finite-size effects
rather than from a true phase transition in the thermodynamic limit. This is consistent with the
behavior of the magnetic moment, which remains zero for all temperatures.

At D = 1.95, the internal energy shows a more rapid change at T (1)
C , accompanied by sig-

nificantly higher and sharper peaks in the specific heat and spin susceptibility compared to those at
lower anisotropy values. These features provide strong evidence for the occurrence of the FOMT.
As D decreases further to values such as 1.9 and 1.8, the temperature dependence of the internal
energy at T (2)

C becomes smoother. Meanwhile, the peaks in specific heat and spin susceptibility



Phong H. Nguyen et al. 209

become broader and lower, reflecting a weakening of the transition and signaling the presence of
the SOMT.

Fig. 4. Histogram of energy and magnetic moment (inset) with p = 1, D = 1.9, T (2)
C =

0.77 (a); p = 1, D = 1.95, T (1)
C = 0.66 (b).

To differentiate FOMT from SOMT, we display the histograms of the internal energy
P(E) and the magnetic moment P(m), which clearly reveal the presence of FOMT or SOMT.
A Gaussian-like shape in P(E) together with a symmetric double-peak structure in P(m), corre-
sponding to a single dominant ferromagnetic state, signals the SOMT. This behavior is observed
in Fig. 4(a) for p = 1, D = 1.9 at the critical temperature T (2)

C = 0.77. When the anisotropy in-
creases to D = 1.95, the single-peak form of P(E) evolves into a distinct double-peak structure,
as shown in Fig. 4(b), indicating two preferred configurations: one with zero magnetic moment
(paramagnetic) and the other with a finite value of magnetic moment (ferromagnetic). This is fur-
ther reinforced by the three-peak pattern in P(m) (see the inset). These characteristics of P(E) and
P(m) at T (1)

C = 0.66 strongly support the FOMT.

3.2. Case 2: FOMT with disorder (p = 0.9)
In the second case, we investigate the effect of disorder on the FOMT in regimes of high

anisotropy probability, specifically for p = 0.9. This effect becomes apparent when examining
how (a) magnetic moment, (b) internal energy, (c) specific heat, and (d) spin susceptibility evolve
with temperature across different anisotropy strengths (D = 1.8, 1.9, 2.0, 2.1, 2.15, 2.16, 2.2), as
shown in Fig. 5. As the anisotropy amplitude varies, the qualitative behavior of the thermodynamic
quantities in Fig. 5 mirrors that observed in other FOMTs presented in Fig. 3.

For D = 2.2 ≈ qJ
2p , no phase transition is observed. This is reflected in the vanishing mag-

netic moment, specific heat, and spin susceptibility at all temperatures, as shown in Fig. 5(a), (c),
and (d), respectively. Consistent with the behavior of these thermodynamic quantities, the internal
energy in Fig. 5(b) follows an almost linear trend, showing no indication of a critical temperature.

A slight reduction of D from 2.2 induces the FOMT within the range of 2.15≤D < 2.2. At
D = 2.15, Fig. 5(a) reveals a sharp discontinuity in the magnetic moment, which abruptly drops
from a nearly saturated value m ≈ 1 to zero at the Curie temperature T (1)

C = 0.47. This transition
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Fig. 5. (Color online) Thermodynamic quantities as functions of temperature for different
values of D at p= 0.9: (a) magnetic moment, (b) internal energy, (c) specific heat, and (d)
magnetic susceptibility. The inset in panel (a) displays the derivative dm/dT associated
with the main curves.

is accompanied by a deep inverse peak in the derivative of the magnetic moment to temperature
dm/dT , as seen in the inset of Fig. 5(a). In line with this behavior, both the specific heat and spin
susceptibility show sharp, high peaks that are more pronounced than those at lower D, while the
internal energy in Fig. 5(b) exhibits a sudden jump, indicating the latent heat associated with the
first-order nature of the transition at T (1)

C .
For D < 2.15 at p = 0.9, the system instead undergoes the SOMT. As D decreases, the

magnetic moment no longer shows a sharp drop but rather a gradual decline, replacing the discon-
tinuity seen in the FOMT. Correspondingly, both the specific heat and spin susceptibility exhibit
much weaker and narrower peaks, and the internal energy increases smoothly around the transition
temperature T (2)

C .
Regarding the ground state, the MFA results given by Eq.(8) are in complete agreement

with the Monte Carlo results, as shown in the inset of Fig. 5(b). Both approaches reveal a linear
dependence of the ground-state energy E0 on D for a fixed value of p.
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Fig. 6. Histogram of energy and magnetic moment (inset) with p = 0.9, D = 1.9, T (2)
C =

0.89 (a); p = 0.9, D = 2.15, T (1)
C = 0.47 (b).

As shown in Fig. 6, and qualitatively similar to the results in Fig. 4, two distinct types of
distributions in the internal energy and magnetic moment histograms are observed, corresponding
to the SOMT and FOMT. For p = 0.9 and D = 1.9, Fig. 6(a) illustrates the SOMT at the critical
temperature T (2)

C = 0.89, characterized by a Gaussian-like P(E) and a symmetric double peak
in P(m). These two peaks in P(m) indicate that the system favors a single ferromagnetic state,
with fluctuations between equivalent magnetic moment directions. In contrast, Fig. 6(b) presents
the FOMT at D = 2.15, identified by a double-peak structure in P(E) at T (1)

C = 0.47, replacing
the single-peak form seen in the SOMT. This is accompanied by a triple-peak structure in P(m),
suggesting coexistence between two distinct configurations: a nearly saturated ferromagnetic state
and a paramagnetic state with zero magnetic moment.

Fig. 7. Phase diagram showing the dependence of the critical temperature on the
anisotropic factor for p = 1 and p = 0.9.
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The mechanism behind the FOMT can be outlined as follows: when p≥ 0.7 and pD . qJ
2 ,

the system tends to occupy the low-energy spin state with |Sz|= 1 at temperatures below the Curie
point, resulting in a ferromagnetic (FM) phase characterized by a finite magnetic moment. As the
temperature increases and approaches the Curie temperature T (1)

C , the majority of spins shift from
the |Sz| = 1 state to the nearby excited state Sz = 0. This rapid change leads to a sudden collapse
of the magnetic moment, indicating a first-order magnetic transition.

The behaviors of the thermodynamic observables for p = 0.9 and p = 1 are summarized in
the phase diagram shown in Fig. 7. This diagram illustrates how the critical temperature TC varies
with the anisotropy strength D, where SOMT and FOMT are indicated by solid and dotted lines,
respectively, for each value of p. The star labeled A1 and the triangle labeled A2 mark the SOMT
critical temperatures T (2)

C , with corresponding internal energy and magnetic moment histograms
shown in Fig. 4(a) and Fig. 6(a). Likewise, the star labeled B1 and the triangle labeled B2 denote
the FOMT critical temperatures T (1)

C , with related histograms presented in Fig. 4(b) and Fig.
6(b). In both cases, the SOMT and FOMT lines meet at points B1 and B2 for p = 0.9 and p = 1,
respectively, identifying these as the tri-critical points for each probability.

4. Conclusions

Using Monte Carlo simulations, we have studied the influence of anisotropy on the first-
order magnetic transition (FOMT) in highly anisotropic systems, such as perovskite manganite
oxides, within the framework of the two-dimensional spin S = 1 Blume-Capel model with random
anisotropy. For sufficiently high anisotropy probability p, adjusting the anisotropy amplitude D
causes the system to exhibit a transformation from the second-order magnetic transition (SOMT)
to the FOMT, as shown in the phase diagram plotted in the critical temperature versus anisotropy
magnitude (TC−D) plane. This diagram highlights the tri-critical points where the SOMT and
FOMT lines intersect, located at D = 2.15, T (1)

C = 0.47 for p = 0.9, and at D = 1.95, T (1)
C = 0.66

for p = 1.
When the conditions p ≥ 0.7 and pD . qJ

2 are met, the system exhibits a FOMT, char-

acterized by distinct features in the thermodynamic quantities at the critical temperature T (1)
C .

Specifically, a double-peak appears in the internal energy histogram P(E), along with a triple-
peak structure in the magnetic moment histogram P(m). The magnetic moment m shows a sharp
drop, accompanied by a deep inverse peak in its temperature derivative dm/dT . Additionally,
the internal energy E undergoes a sudden jump. Finally, remarkable high and narrow peaks are
observed in both the specific heat CV and the magnetic susceptibility χ .
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