Binding Energy of Exciton in Quantum Dots with the Central-cell Correction Depending on the Dot Sizes
Author affiliations
DOI:
https://doi.org/10.15625/0868-3166/14/2/10700Abstract
The binding energy of exciton in quantum dots with a parabolic confinement potential was calculated by variational methods beyond the Kohn-Luttinger effective mass theory, when the central-cell correction was taken into account.We have assumed that a short range potential with two parameters for strength and range for exciton, representing the center-cell effect also depends on dot size. Our result is in good agreement with experiment.Downloads
Downloads
Published
How to Cite
Issue
Section
License
Communications in Physics is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Copyright on any research article published in Communications in Physics is retained by the respective author(s), without restrictions. Authors grant VAST Journals System (VJS) a license to publish the article and identify itself as the original publisher. Upon author(s) by giving permission to Communications in Physics either via Communications in Physics portal or other channel to publish their research work in Communications in Physics agrees to all the terms and conditions of https://creativecommons.org/licenses/by-sa/4.0/ License and terms & condition set by VJS.


