Formation of Microdroplet in T-junction Microfluidic System: Experiment and Simulation
Author affiliations
DOI:
https://doi.org/10.15625/0868-3166/28/3/12530Keywords:
COMSOL Multiphysic, Microdroplet, T-junction microfluidic system.Abstract
The purpose of this study is to investigate the formation of the water droplet in oil using T-junction microfluidic device. Both numerical and experimental methods have been developed to explore the dependence of droplet size on the flow rate of two immiscible liquids as well as the system geometry. The velocity of droplet in channel is also considered. The microfluidic system was fabricated with lithography technique. The 3D simulation was performed based on COMSOL software using level set method. The size of droplet is inversely proportional to the flow rate of continuous phase according to exponential function, increases linearly with the flow rate of dispersed phase, and decreases as the width of lateral channel decreases. While the decreasing of the width of the lateral channel gives rise to the increasing of droplet velocity, the velocity of droplet depends linearly on the flow rate of disperse phase. A good consistence was observed between the theory and the experiment.Downloads
Downloads
Published
How to Cite
Issue
Section
License
Communications in Physics is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Copyright on any research article published in Communications in Physics is retained by the respective author(s), without restrictions. Authors grant VAST Journals System (VJS) a license to publish the article and identify itself as the original publisher. Upon author(s) by giving permission to Communications in Physics either via Communications in Physics portal or other channel to publish their research work in Communications in Physics agrees to all the terms and conditions of https://creativecommons.org/licenses/by-sa/4.0/ License and terms & condition set by VJS.


