Magnetic Order in Heisenberg Models on Non-Bravais Lattice: Popov-Fedotov Functional Method
Author affiliations
DOI:
https://doi.org/10.15625/0868-3166/29/2/13508Keywords:
Popov - Fedotov trick, functional integral, Heisenberg model, non-Bravais latticeAbstract
We study magnetic properties of ordered phase in Heisenberg model on a non-Bravais lattice by means of Popov - Fedotov trick, which takes into account a rigorous constraint of a single occupancy. We derive magnetization and free energy using sadle point approximation in the functional integral formalism. We illustrate the application of the Popov -- Fedotov approach to the Heisenberg antiferromagnet on a honeycomb lattice.Downloads
References
A. Auerbach, Interacting electrons and quantum magnetism, Springer Verlag (1994)
Yu.A. Izyumov and Y.N. Skryabin, Statistical Mechanics of Magnetically Ordered Systems, Springer Verlag (1988)
E. Fradkin, Field theories of condensed matter systems, Addison-Wesley Publishing Company (1991)
D.P. Arovas and A. Auerbach, Phys. Rev B 38, p.316 (1988)
V.N. Popov and S. A. Fedotov, Sov. Phys. JETP 67 535 (1988)
O.Veits, et al, J. France 4 493 (1994)
M.N. Kicelev, Int. J. Mod. Phys B 20 381 (2006)
S.A. Kulagin et al, Phys. Rev. Lett. 110 070601 (2013)
N.V.Prokof’ev and B. Svistunov, Phys. Rev. B 84 073102 (2011)
J. Carlstrom, J. Phys.: Condens. Matter 29 385602 (2017)
S. Tejima and A. Oguchi, J. Phys. Soc. Jpn. 64 4923 (1995)
S. Azakov et al, Int. J. Mod. Phys. B 14 13 (2000)
R. Dillenschneider and J. Richert, Eur. Phys. J. B 49 187 (2006)
Pham Thi Thanh Nga and Nguyen Toan Thang, Comm. in Phys. 22 33 (2012); Comm. in Phys. 22 383 Erratum (2012)
J. Stein and R. Oppermann, Phys. Rev. B 46 8409 (1992)
M. Bechmann and R. Oppermann, Eur. Rev. B 41 525 (2004)
M.N. Kiselev and R. Oppermann, Sov. Phys. JETP Letters 71 250 (2000)
H. T. Diep (Ed.), Frustrated Spin Systems, 2nd ed. World Scientific, Singapore, 2013
R. F. Bishop et al, Phys. Rev. B 82 024416 (2010)
R. F. Bishop et al, Phys. Rev. B 88 214418 (2013)
P.H. Li et al, J. Phys: Conf. Series 529 012008 (2014)
P.H. Li et al, Phys. Rev. B 88 144423 (2013)
S.S. Pershoguba et al, Phys. Rev. X 8 011010 (2018)
J. Fransson et al, Phys. Rev. B 94 075401 (2016)
S.A. Owerre, J. Phys.: Condens. Matter 30 245803 (2018)
S.J. Miyake, J. Phys. Soc. Jpn. 91 938 (1992)
Downloads
Published
How to Cite
Issue
Section
License
Communications in Physics is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Copyright on any research article published in Communications in Physics is retained by the respective author(s), without restrictions. Authors grant VAST Journals System (VJS) a license to publish the article and identify itself as the original publisher. Upon author(s) by giving permission to Communications in Physics either via Communications in Physics portal or other channel to publish their research work in Communications in Physics agrees to all the terms and conditions of https://creativecommons.org/licenses/by-sa/4.0/ License and terms & condition set by VJS.


