Hydrodynamic Simulations of Circumstellar Envelopes under the Gravitational Influence of a Wide Binary Companion: Comparison Between Circular and Elliptical Orbits
Author affiliations
DOI:
https://doi.org/10.15625/0868-3166/29/3SI/14338Abstract
Shapes of circumstellar envelopes around mass losing stars contain information of the very inner region of the envelope where mass loss process takes place. It’s well known that the presence of a binary companion leads to strong influence on the structure of the envelope through orbital motion of the mass losing star and the gravitational interaction of the companion with the stellar wind. To investigate this effect and structures of envelopes, we have performed high resolution hydrodynamic simulations of a wide binary system in a number of orbital configurations. Our simulations clearly show the importance of the equation of state of the gas because in isothermal case the width of the spiral arm is significantly broadened with respect to the ideal gas case, therefore resulting in unrealistic spiral patterns. As the orbital geometry changes from circular to elliptical, our simulation results show that the spiral becomes bifurcated and increasingly asymmetric as indicated in previously published results. In the polar direction, the prominent alternating arcs associated with circular orbital configuration morph into almost continuous circular rings. The physical condition of the gas in the envelope is shown to vary strongly between the spiral arm and inter-arm regions. Our hydrodynamic simulations will be useful to interpret high angular resolution observations of circumstellar envelopes.Downloads
Downloads
Published
How to Cite
Issue
Section
License
Communications in Physics is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Copyright on any research article published in Communications in Physics is retained by the respective author(s), without restrictions. Authors grant VAST Journals System (VJS) a license to publish the article and identify itself as the original publisher. Upon author(s) by giving permission to Communications in Physics either via Communications in Physics portal or other channel to publish their research work in Communications in Physics agrees to all the terms and conditions of https://creativecommons.org/licenses/by-sa/4.0/ License and terms & condition set by VJS.


