Synthesis and Electrochemical Characterization of NiCo\(_2\)S\(_4\) Nanosheets/reduced Graphene Oxide for Energy Storage Applications
Author affiliations
DOI:
https://doi.org/10.15625/0868-3166/30/4/15448Keywords:
Electrode, energy storage device, NiCo2S4, reduced graphene oxide, transition metal sulfideAbstract
In the present study, NiCo2S4-rGO (NCS-rGO) composites were fabricated by mixing active materials including NCS and rGO individually using polyvinypyrrolidone (PVP) as a binder to form a homogeneous mixture. Therein, rGO was prepared by modified Hummer’s method while NCS nanosheets were successfully synthesized by thermal decomposition method using 1-dodecanethiol (DDT) as a sulfur source. The NCS-rGO composites based electrode was then produced using 3D printing technique making easy to design electrodes with the desired shape. The architecture and elemental composition of electrode components are characterized by energy dispersive x-ray analysis (EDX) and scanning electron microscopy (SEM). The electrochemical activity of the NCS-rGO electrode were studied in three electrode configuration in 6M KOH electrolyte by CV, GCD and EIS measurement. The obtained results indicate that the combination of NCS nanosheets and rGO could improve the electrical conductivity of the individual materials, enhance electrochemical performance of electrode. The as-prepared NCS-rGO electrode posseses a high Csp of 1535.8 Fg-1 at 4 Ag-1 with excellent cycling stability even after 2500 charge-discharge cycles, demonstrating that the NCS-rGO nanocomposites are promising candidates for electrode materials for high-performance energy storage devices in the future.
Downloads
References
[1] A. S. Arico, P. Bruce, B. Scrosati, J. M. Tarascon, W. V. Schalkwijk, Nat. Mater. 4 (2005) 366.
[2] C. Liu, F. Li, L. P. Ma, H. M. Cheng, Adv. Mater. 22 (2010) E28–E62.
[3] N. Garg, M. Basu, A. K. Ganguli, J. Phys. Chem. C 118 (2014) 17332.
[4] S. Zhang, N. Pan, Adv. Energy Mater. 5 (2015), 1401401.
[5] P. Simon, Y. Gogotsi, Nat. Mater. 7 (2008) 845.
[6] K. Xu, R. Zou, W. Li, Q. Liu, X. Liu, L. An, J. Hu, J. Mater. Chem. A 2 (2014) 10090.
[7] L. L. Zhang, X. Zhao, Chem. Soc. Rev. 38 (2009) 2520.
[8] J. R. Miller, P. Simon, Sci. Mag. 321 (2008) 651.
[9] A. Wang, H. Wang, S. Zhang, C. Mao, J. Song, H. Niu, Y. Tian, Appl. Surf. Sci. 282 (2013) 704.
[10] Z. Fan, J. Yan, T. Wei, L. Zhi, G. Ning, T. Li, F. Wei, Adv. Funct. Mater. 21 (2011) 2366.
[11] W. Peng, H. Li, S. Song, ACS Appl. Mater. Interfaces, 9 (2017) 5204.
[12] P. Kulkarni, S. K. Nataraj, R. G. Balakrishna, D. H. Nagaraju, M. V. Reddy, J. Mater. Chem. A. 5 (2017) 22040–
[13] S. J. Peng, L. L. Li, C. C. Li, H. T. Tan, R. Cai, Yu H, S. Mhaisalkar, M. Srinivasan, S. Ramakrishna, Q. Y. Yan,
Chem. Commun. 49 (2013) 10178.
[14] X. Cai, X. Shen, L. Ma, Z. Ji, L. Kong, RSC Advances 5 (2015) 58777.
[15] J. Li, S. Xiong, Y. Liu, Z. Ju, Y. Qian, ACS Appl. Mater. Interfaces 5 (2013) 981.
[16] T. Chen, Y. Tang, W. Guo, Y. Qiao, S. Yu, S. Mu, F. Gao, Electrochimica Acta 212 (2016) 294.
[17] H. Nan, J. Han, Q. Luo, X. Yin, Y. Zhou, Z. Yao, X. Zhao, X. Li, H. Lin, Appl. Surf. Sci. 437 (2018) 227.
[18] H. Chen, J. Jiang, L. Zhang, H. Wan, T. Qi, D. Xia, Nanoscale 5 (2013) 8879.
[19] Surjit Sahoo, Chandra Sekhar Rout, Electrochemica Acta, 220 (2016) 57.
[20] J. Pu, F. L. Cui, S. B. Chu, T. T. Wang, E. H. Sheng, Z. H. Wang, ACS Sustainable Chem. Eng. 2 (2014) 809.
[21] Y. F. Zhang, M. Z. Ma, J. Yang, C. C. Sun, H. Q. Su, W. Huang, X. C. D, Nanoscale, 6 (2016) 9824.
[22] L. Yu, L. Zhang, H. B. Wu, X. W. D. Lou, Angew. Chem. Int. Ed. Engl, 53 (2014) 3711.
[23] J. W. Xiao, X. W. Zeng, W. Chen, F. Xiao, S. Wang, Chem. Commun. 50 (2014) 9596.
[24] Q. Li, N. Mahmood, J.H. Zhu, Y.L. Hou, S.H. Sun, Nano Today 9 (2014) 668.
[25] M. J. Zhi, C. C. Xiang, J. T. Li, M. Li and N. Q. Wu, Nanoscale 5 (2013) 72.
[26] W.M.Du,Z.Y.Wang,Z.Q.Zhu,S.Hu,X.Y.Zhu,Y.F.Shi,H.Pang,X.F.Qian,J.Mater.Chem.A2(2014)
[27] X. Huang, Z. Y. Yin, S. Wu, X. Y. Qi, Q. He, Q. Zhang, Q. Yan, F. Boey, H. Zhang, Small 7 (2011) 1876.
[28] C. C. Xiang, M. Li, M. J. Zhi, A. Manivannan, N. Q. Wu, J. Power Sources, 226 (2013) 65.
[29] Le T. T. Tam, Nguyen V. Hung, Doan T. Tung, Ngo T. Dung, Hoang T. Dung, Pham T. Nam, Phan N. Minh,
Phan N. Hong, Le T. Lu, Vietnam J. Sci. Technol. 57 (2019) 58.
[30] Doan T. Tung, Le T. T. Tam, Hoang T. Dung, Ngo T. Dung, Nguyen T. Dung, Thai Hoang, Tran D. Lam, Phan
N. Minh, Tran V. Thu, Phan N. Hong, Le T. Lu, J. Electron. Mater. 49 (2020) 4671.
[31] K. Fu, Y. Wang, C. Yan, Y. Yao, Y. Chen, J. Dai, S. Lacey, Y. Wang, J. Wan, T. Li, Z. Wang, Y. Xu, L. Hu, Adv.
Mater. 28 (2016) 2587.
[32] S. Sahoo, C. S. Rout, Electrochimica Acta 220 (2016) 57.
[33] W. M. Du, Z. Q. Zhu, Y. B. Wang, J. N. Liu, W. J. Yang, X. F. Qian, H. Pang, RSC Adv. 4 (2014) 6998.
[34] M. B. Zakaria, M. Hu, R. R. Salunkhe, M. Pramanik, K. Takai, V. Malgras, S. Choi, S. X. Dou, J. H. Kim, M.
Imura, S. Ishihara, Y. Yamauchi, Chem. A Eur. J. 21 (2015) 3605.
[35] C. Mondal, M. Ganguly, P. K. Manna, S. M. Yusuf and T. Pal, Langmuir, 29 (2013), 9179.
[36] S. Sahoo, C. S. Rout, Electrochimica Acta, 220 (2016) 57–66.
[37] T. Morishita, Y. Soneda, H. Hatori, M. Inagaki, Electrochim. Acta, 52 (2007) 2478.
[38] Y. H. Li, L. J. Cao, L. Qiao, M. Zhou, Y. Yang, P. Xiao, Y. H. Zhang, J. Mater. Chem. A 2 (2014) 6540.
[39] Z. Li, X. Ji, J. Han, Y. Hu, R. Guo, J. Colloid Interface Sci. 477 (2016) 46.
[40] X. Yang, H. Niu, H. Jiang, Z. Sun, Q. Wang, F. Qu, ChemElectroChem, 5 (2018) 1576.
[41] Y. Wu, M. Yan, L. Sun, W. Shi, New J. Chem. 42 (2018), 16174.
[42] W. Peng, H. Chen, W. Wang, Y. F. Huang, G. Han, Curr. Appl. Phys. 20 (2020) 304.
[43] N. V. Hoa, P. A. Dat, N. V. Hieu, T. N. Le, N. C. Minh, Ng. V. Tang, D. T. Nga, T. Q. Ngoc, Diam. Relat. Mater.
(2020), 107850.
Downloads
Published
How to Cite
Issue
Section
License
Communications in Physics is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Copyright on any research article published in Communications in Physics is retained by the respective author(s), without restrictions. Authors grant VAST Journals System (VJS) a license to publish the article and identify itself as the original publisher. Upon author(s) by giving permission to Communications in Physics either via Communications in Physics portal or other channel to publish their research work in Communications in Physics agrees to all the terms and conditions of https://creativecommons.org/licenses/by-sa/4.0/ License and terms & condition set by VJS.


