Supercontinuum Generation in Photonic Crystal Fibers Infiltrated with Liquids
Author affiliations
DOI:
https://doi.org/10.15625/0868-3166/15547Keywords:
photonic crystal fiber, supercontinuum generation, feneralized nonlinear Schrödinger equationAbstract
In this paper we present the development of a new direction in so-called optofluidics , namely the research of photonic crystal fibers (PCF) infiltrated with liquids. In particular we concentrate on the flagship application of PCF, the process of Supercontinuum Generation (SG), in which injected monochromatic pulse may be dramatically broadened (spectrally), which creates a coherent beam generation of high brightness comparable to that of monochromatic lasers. The supercontinuum is formed when a collection of nonlinear processes act together upon a pump beam in order to cause severe spectral broadening of the original pump beam. Explanation of this process is based on numerical simulations for Generalized Nonlinear Schrödinger equation (GNLSE) which describes the rich nonlinear dynamics of pulse propagation in nonlinear dispersive media. All nonlinear phenomena involved in SG will be analyzed. We present specially activity of the Polish-Vietnamese Group from the beginning in 2016 to recent time in this domain.
Downloads
Downloads
Published
How to Cite
Issue
Section
License
Communications in Physics is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Copyright on any research article published in Communications in Physics is retained by the respective author(s), without restrictions. Authors grant VAST Journals System (VJS) a license to publish the article and identify itself as the original publisher. Upon author(s) by giving permission to Communications in Physics either via Communications in Physics portal or other channel to publish their research work in Communications in Physics agrees to all the terms and conditions of https://creativecommons.org/licenses/by-sa/4.0/ License and terms & condition set by VJS.


