High-dimensional Private Quantum Channels and Regular Polytopes
Author affiliations
DOI:
https://doi.org/10.15625/0868-3166/15762Abstract
As the quantum analog of the classical one-time pad, the private quantum channel (PQC) plays a fundamental role in the construction of the maximally mixed state (from any input quantum state), which is very useful for studying secure quantum communications and quantum channel capacity problems. However, the undoubted existence of a relation between the geometric shape of regular polytopes and private quantum channels in the higher dimension has not yet been reported. Recently, it was shown that a one-to-one correspondence exists between single-qubit PQCs and three-dimensional regular polytopes (i.e., regular polyhedra). In this paper, we highlight these connections by exploiting two strategies known as a generalized Gell-Mann matrix and modified quantum Fourier transform. More precisely, we explore the explicit relationship between PQCs over a qutrit system (i.e., a three-level quantum state) and regular 4-polytopes. Finally, we attempt to devise a formula for such connections on higher dimensional cases.Downloads
Downloads
Published
How to Cite
Issue
Section
License
Communications in Physics is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Copyright on any research article published in Communications in Physics is retained by the respective author(s), without restrictions. Authors grant VAST Journals System (VJS) a license to publish the article and identify itself as the original publisher. Upon author(s) by giving permission to Communications in Physics either via Communications in Physics portal or other channel to publish their research work in Communications in Physics agrees to all the terms and conditions of https://creativecommons.org/licenses/by-sa/4.0/ License and terms & condition set by VJS.


