Effect of Cu\(^{2+}\) Dopant on the Formation of Zinc Oxide Microrod Fabricated by a Hydrothermal Method

Sang Xuan Nguyen, Phuoc Sang Le, Thi Lan Anh Luu
Author affiliations

Authors

  • Sang Xuan Nguyen Department of Electronics and Telecommunication,Saigon University https://orcid.org/0000-0003-2048-3137
  • Phuoc Sang Le
  • Thi Lan Anh Luu School of Engineering Physics, Hanoi University of Science and Technology, No 1, Dai Co Viet, Hanoi

DOI:

https://doi.org/10.15625/0868-3166/15921

Keywords:

Cu ion dopant, growth models, morphology, hydrothermal, ZnO microstructures

Abstract

Reconstruction and stabilization of polar oxide surfaces, such as ZnO, contribute a significant role in photocatalysis, chemical sensing, and optoelectronic applications, however their physical chemistry insight is still a puzzle in the surface science. In this work, the  polar surface instability induced the morphological evolution of hydrothermally synthesized micro-rod ZnO doped with various contents of Cu2+ ion (1-10 at.%)  was investigated. The transformation of micro-rod morphology from the high aspect ratio flower-like shape of the pure ZnO to the hexagonal prism-like shape of the doped ZnO was characterized by X-ray diffractometry, scanning electron microscopy and micro Raman spectroscopy. The chemically active Zn-terminated polar surface in doped samples was less positive charge density which was the main reason to cancel the electrostatic instability for the dominant  growing direction. Furthermore, the schematic models of the electron transferring from the conduction band region to the electron trap centre of Cu2+, and the Zn-terminated polar surface reconstruction were proposed for the morphological evolution mechanism.

Downloads

Download data is not yet available.

References

M. Scarrozza, G. Pourtois, M. Houssa, M. Caymax, A. Stesmans, M. Meuris, M.M. Heyns, A theoretical study of the initial oxidation of the GaAs(001)-β2(2×4) surface, Applied Physics Letters, 95 (2009) 253504 https://doi.org/10.1063/1.3275737

C. Noguera, Polar oxide surfaces, Journal of Physics: Condensed Matter, 12 (2000) R367-R410 https://doi.org/10.1088/0953-8984/12/31/201

D. Mora-Fonz, T. Lazauskas, M.R. Farrow, C.R.A. Catlow, S.M. Woodley, A.A. Sokol, Why Are Polar Surfaces of ZnO Stable?, Chemistry of Materials, 29 (2017) 5306-5320 https://doi.org/10.1021/acs.chemmater.7b01487

C.T. Quy, N.X. Thai, N.D. Hoa, D.T. Thanh Le, C.M. Hung, N. Van Duy, N. Van Hieu, C2H5OH and NO2 sensing properties of ZnO nanostructures: correlation between crystal size, defect level and sensing performance, RSC Advances, 8 (2018) 5629-5639 https://doi.org/10.1039/c7ra13702h

M. Tonezzer, T.T.L. Dang, N. Bazzanella, V.H. Nguyen, S. Iannotta, Comparative gas-sensing performance of 1D and 2D ZnO nanostructures, Sensors and Actuators B: Chemical, 220 (2015) 1152-1160 https://doi.org/10.1016/j.snb.2015.06.103

G.H. Mhlongo, K. Shingange, Z.P. Tshabalala, B.P. Dhonge, F.A. Mahmoud, B.W. Mwakikunga, D.E. Motaung, Room temperature ferromagnetism and gas sensing in ZnO nanostructures: Influence of intrinsic defects and Mn, Co, Cu doping, Applied Surface Science, 390 (2016) 804-815 https://doi.org/10.1016/j.apsusc.2016.08.138

Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, H. Yan, One-Dimensional Nanostructures: Synthesis, Characterization, and Applications, Advanced Materials, 15 (2003) 353-389 https://doi.org/10.1002/adma.200390087

B.L. J.Miao, II-VI Semiconductor nanowires: ZnO, Elviser Ltd., 2015.

I. Žutić, J. Fabian, S. Das Sarma, Spintronics: Fundamentals and applications, Reviews of Modern Physics, 76 (2004) 323-410

S. Choi, J.Y. Do, J.H. Lee, C.S. Ra, S.K. Kim, M. Kang, Optical properties of Cu-incorporated ZnO (Cu x Zn y O) nanoparticles and their photocatalytic hydrogen production performances, Materials Chemistry and Physics, 205 (2018) 206-209

A. Meng, J. Xing, Z. Li, Q. Li, Cr-doped ZnO nanoparticles: Synthesis, characterization, adsorption property, and recyclability, ACS Appl Mater Interfaces, 7 (2015) 27449-27457

N.A. Putri, V. Fauzia, S. Iwan, L. Roza, A.A. Umar, S. Budi, Mn-doping-induced photocatalytic activity enhancement of ZnO nanorods prepared on glass substrates, Applied Surface Science, 439 (2018) 285-297

A. Sahai, Y. Kumar, V. Agarwal, S.F. Olive-Méndez, N. Goswami, Doping concentration driven morphological evolution of Fe doped ZnO nanostructures, Journal of Applied Physics, 116 (2014) 164315

A.N. Kadam, T.G. Kim, D.S. Shin, K.M. Garadkar, J. Park, Morphological evolution of Cu doped ZnO for enhancement of photocatalytic activity, Journal of Alloys and Compounds, 710 (2017) 102-113

M. Babikier, D. Wang, J. Wang, Q. Li, J. Sun, Y. Yan, Q. Yu, S. Jiao, Cu-doped ZnO nanorod arrays: the effects of copper precursor and concentration, Nanoscale Res Lett, 9 (2014) 199

O. Dulub, U. Diebold, G. Kresse, Novel stabilization mechanism on polar surfaces: ZnO(0001)-Zn, Phys Rev Lett, 90 (2003) 016102

J.V. Lauritsen, S. Porsgaard, M.K. Rasmussen, M.C. Jensen, R. Bechstein, K. Meinander, B.S. Clausen, S. Helveg, R. Wahl, G. Kresse, F. Besenbacher, Stabilization principles for polar surfaces of ZnO, ACS Nano, 5 (2011) 5987-5994

V. Staemmler, K. Fink, B. Meyer, D. Marx, M. Kunat, S. Gil Girol, U. Burghaus, C. Woll, Stabilization of polar ZnO surfaces: validating microscopic models by using CO as a probe molecule, Phys Rev Lett, 90 (2003) 106102

Y. Yang, D. Xu, Q. Wu, P. Diao, Cu2O/CuO Bilayered Composite as a High-Efficiency Photocathode for Photoelectrochemical Hydrogen Evolution Reaction, Sci Rep, 6 (2016) 35158

C. Ye, X. Fang, Y. Hao, X. Teng, L. Zhang, Zinc oxide nanostructures: morphology derivation and evolution, J Phys Chem B, 109 (2005) 19758-19765

S. Xu, Z.L. Wang, One-dimensional ZnO nanostructures: Solution growth and functional properties, Nano Research, 4 (2011) 1013-1098

Z.L. Wang, Zinc oxide nanostructures: growth, properties and applications, Journal of Physics: Condensed Matter, 16 (2004) R829-R858

N. Goswami, A. Sahai, Structural transformation in nickel doped zinc oxide nanostructures, Materials Research Bulletin, 48 (2013) 346-351

Y. Deng, A.D. Handoko, Y. Du, S. Xi, B.S. Yeo, In Situ Raman Spectroscopy of Copper and Copper Oxide Surfaces during Electrochemical Oxygen Evolution Reaction: Identification of CuIII Oxides as Catalytically Active Species, ACS Catalysis, 6 (2016) 2473-2481

M. Ivanda, D. Waasmaier, A. Endriss, J. Ihringer, A. Kirfel, W. Kiefer, Low-temperature anomalies of cuprite observed by Raman spectroscopy and x-ray powder diffraction, Journal of Raman Spectroscopy, 28 (1997) 487-493

M.A. Rizvi, S.A. Akhoon, S.R. Maqsood, G.M. Peerzada, Synergistic effect of perchlorate ions and acetonitrile medium explored for extension in copper redoximetry, Journal of Analytical Chemistry, 70 (2015) 633-638

Z.L. Wang, X.Y. Kong, J.M. Zuo, Induced growth of asymmetric nanocantilever arrays on polar surfaces, Phys Rev Lett, 91 (2003) 185502

Downloads

Published

27-03-2022

How to Cite

[1]
S. X. Nguyen, P. S. Le, and T. L. A. Luu, “Effect of Cu\(^{2+}\) Dopant on the Formation of Zinc Oxide Microrod Fabricated by a Hydrothermal Method”, Comm. Phys., vol. 32, no. 2, p. 213, Mar. 2022.

Issue

Section

Papers

Most read articles by the same author(s)

Similar Articles

<< < 3 4 5 6 7 8 9 10 11 > >> 

You may also start an advanced similarity search for this article.