Detection of Ultra-Low Concentration of Methylene Blue by Porous Silicon Photonic Crystals Covered With Siver Nanoparticles as Efficient Sers Substrate
Author affiliations
DOI:
https://doi.org/10.15625/0868-3166/15927Keywords:
porous silicon, photonic crystal, silver nanoparticles, SERS, methylene blueAbstract
In this work, porous silicon photonic crystals (PSi PhCs) covered by silver nanoparticles (AgNPs) were prepared as surface-enhanced Raman scattering (SERS) substrate to detect methylene blue (MB) at low concentrations. The limit of MB detection in water by the SERS substrate is evaluated to be 10\(^{-10}\) mol/L. The SERS signal intensities of 446 cm\(^{-1}\) and 1623 cm\(^{-1}\) peaks in SERS spectra of MB are fit in exponential functions of concentrations ranging from 10\(^{-4}\) to 10\(^{-10}\) mol/L. These results show that the AgNPs on PSi PhCs substrates could be applied in environmental sensing.
Downloads
References
[1] B. S. Lee, P. C. Lin, D. Z. Lin and T. J. Yen, Scientific Reports 8 (2018) 516.
[2] J. Tang, M. Yu, T. Jiang, E. Wang, C. Ge and Z. Chen, Optik 136 (2018) 244.
[3] T. B. Pham, T. H. C. Hoang, V. H. Pham, V. C. Nguyen, T. V. Nguyen, D. C. Vu, V. H. Pham and H. Bui, Scientific Reports 9 (2019) 12590.
[4] T. B. Pham, V. C. Nguyen, V. H. Pham, H. Bui, R. Coisson, V. H. Pham and D. C. Vu, Journal of Nanoscience and Nanotechnology 20 (2020) 1928.
[5] R. P. Zaccaria, F. Bisio, G. Das, G. Maidecchi, M. Caminale, C. D. Vu, F. De Angelis, E. Di Fabrizio, A. Toma and M. Canepa, ACS Appl. Mater. Interfaces 8 (2016) 8024.
[6] Z. Zhu, V. W. Espulgar, H. Yoshikawa, M. Saito, B. Fan, X. Dou and E. E. Tamiya, Bulletin of the Chemical Society of Japan 91 (2018) 1579.
[7] C. Zong, M. Xu, J. L. Xu, T. Wei, X. Ma, S. X. Zheng, R. Hu and B. Ren, Chemical Reviews 118 (2018) 4946.
[8] Z. Yin, Y. Wang, C. Song, L. Zheng, N. Ma, X. Liu, S. Li, L. Lin, M. Li, Y. Xu, W. Li, G. Hu, Z. Fang and D. Ma, Journal of the American Chemical Society 140 (2018) 864.
[9] R. Wang, K. Kim, N. Choi, X. Wang, J. Lee, J. H. Joen, G. Rhie and J. Choo, Sensor and
Actuators B: Chemical 270 (2018) 72.
[10] H. Zhang, Y. Kang, P. Liu, X. Tao, J. Pei, H. Li, and Y. Du, Analytical Letters 49 (2016) 2268.
[11] B. Han, Y. L. Zhang, L. Zhu, X. H. Chan, Z. C. Ma, X. L. Zhang, J. N. Wang, W. Wang, Y. Q. Liu, Q. D. Chen and H. B. Sun, Sensor and Actuators B: Chemical 270 (2018) 500.
[12] K. Wang, Y. Wang, C. Wang, X. Jia, J. Li, R. Xiao and S. Wang, RSC Advances 8 (2018)
[13] D. Cheng, M. He, J. Ran, G. Cai, J. Wu and X. Wang, Sensor and Actuators B: Chemical 270 (2018) 508–517.
[14] S. Jiang, J. Guo, C. Zhang, C. Li, M. Wang, Z. Li, S. Gao, P. Chen, H. Si, and S. Xu, RSC Advances 7 (2017) 5764.
[15] F. Zhong, Z. Wu, J. Guo and D. Jia, Nanomaterials 8 (2018) 872.
H. V. Bandarenka, V. G. Kseniya, S. A. Zavatski, A. Panarin and S. N. Terekhov, Materials 11 (2018) 852.
[17] G. Lu, G. Wang, and H. Li, RSC Adv. 8 (2018) 6629.
[18] A. M. Alwan, L. A. Wali and A. A. Yousif, Silicon 10 (2018) 2241.
[19] P. Lova, G. Manfredi, and D. Comoretto, Adv. Optical Mater. 6 (2018) 1800730.
[20] E. N. Aybeke, Y. Lacroute, C. Elie-Caille, A. Bouhelier, E. Bourillot and E. Lesniewska, Nanotechnology 26 (2015) 245302.
[21] T. T. H. Pham, X. H. Vu, N. D. Dien, T. T. Trang, N. V. Truong, T. D. Thanh, P. M. Tan and N. X. Ca, RSC Adv. 10 (2020) 24577.
[22] G. Laurent, N. Felidj, J. Grand, J. Aubard, G. Levi, A. Hohenau, F. R. Aussenegg and J. R. Krenn, Phys. Rev. B 73 (2006) 245417.
[23] G-N. Xiao and S-Q. Man, Chem. Phys. Lett. 447 (2007) 305.
[24] A. Merlen, V. Gadenne, J. Romann, V. Chevallier, L. Patrone and J. C. Valmalette, Nanotechnology 20 (2009) 215705.
[25] X. Dong, H. Gu, J. Kang, X. Yuan and J. Wu, J. Mol. Struct. 984 (2010) 396.
[26] N. Nuntawong, M. Horprathum, P. Eiamchai, K. Wong-ek, V. Patthanasettakul and P. Chindaudom, Vacuum 84 (2010) 1415.
[27] B. Huy, P. V. Hoi, D. T. Chi, P. H. Khoi and N. T. Van, Int. J. Nanotechnol. 8 (2011) 360.
[28] J. J. Wang, Z. H. Jia and Y. Liu, IEEE Sensors Journal 19 (2019) 11221.
[29] C. Pacholski, Sensors (Basel). 13 (2013) 4694.
[30] R. R. Naujok, R. V. Duevel and R. M. Corn, Langmuir 9 (1993) 1771.
[31] K-D. Shim and E-S. Jang, Bull. Korean Chem. Soc. 39 (2018) 936.
[32] K. T. Tu and C. K. Chung, Journal of The Electrochemical Society 164 (2017) B3081.
[33] E. N. Aybeke, Y. Lacroute, C. Elie-Caille, A. Bouhelier, E. Bourillot and E. Lesniewska, Nanotechnology 26 (2015) 245302.
[34] M. Zannotti, A. Rossi and R. Giovannetti, Coatings 10 (2020) 288.
[35] X. Guo, Z. Guo, Y. Jin, Z. Liu, W. Zhang and D. Huang, Microchim Acta 178 (2012) 229.
[36] X. X. Han, Y. Xie, B. Zhao and Y. Ozaki, Anal. Chem. 82 (2010) 4325.
[37] S. E. J. Bell and N. M. S. Sirimuthu, Chem. Soc. Rev. 37 (2008) 1012.
[38] I. Alessandri, J. Am. Chem. Soc. 135 (2013) 5541.
Downloads
Published
How to Cite
Issue
Section
License
Communications in Physics is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Copyright on any research article published in Communications in Physics is retained by the respective author(s), without restrictions. Authors grant VAST Journals System (VJS) a license to publish the article and identify itself as the original publisher. Upon author(s) by giving permission to Communications in Physics either via Communications in Physics portal or other channel to publish their research work in Communications in Physics agrees to all the terms and conditions of https://creativecommons.org/licenses/by-sa/4.0/ License and terms & condition set by VJS.


