Elastic and Inelastic Alpha Transfer in the \(^{16}\)O+\(^{12}\)C Scattering
Author affiliations
DOI:
https://doi.org/10.15625/0868-3166/16002Keywords:
optical potential, coupled reaction channels, inelastic $\alpha$ transferAbstract
The elastic scattering cross section measured at energies \(E\lesssim 10\) MeV/nucleon for some light heavy-ion systems having two identical cores like \(^{16}\)O+\(^{12}\)C exhibits an enhanced oscillatory pattern at the backward angles. Such a pattern is known to be due to the transfer of the valence nucleon or cluster between the two identical cores. In particular, the elastic \(\alpha\) transfer has been shown to originate directly from the core-exchange symmetry in the elastic \(^{16}\)O+\(^{12}\)C scattering. Given the strong transition strength of the $2^+_1$ state of $^{12}$C and its large overlap with the $^{16}$O ground state, it is natural to expect a similar \(\alpha\) transfer process (or inelastic \(\alpha\) transfer) to take place in the inelastic \(^{16}\)O+\(^{12}\)C scattering. The present work provides a realistic coupled channel description of the \(\alpha\) transfer in the inelastic \(^{16}\)O+\(^{12}\)C scattering at low energies. Based on the results of the 4 coupled reaction-channels calculation, we show a significant contribution of the \(\alpha\) transfer to the inelastic \(^{16}\)O+\(^{12}\)C scattering cross section at the backward angles. These results suggest that the explicit coupling to the \(\alpha\) transfer channels is crucial in the studies of the elastic and inelastic scattering of a nucleus-nucleus system with the core-exchange symmetry.
Downloads
Downloads
Published
How to Cite
Issue
Section
License
Communications in Physics is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Copyright on any research article published in Communications in Physics is retained by the respective author(s), without restrictions. Authors grant VAST Journals System (VJS) a license to publish the article and identify itself as the original publisher. Upon author(s) by giving permission to Communications in Physics either via Communications in Physics portal or other channel to publish their research work in Communications in Physics agrees to all the terms and conditions of https://creativecommons.org/licenses/by-sa/4.0/ License and terms & condition set by VJS.


