Higher-order Nonclassicality in Superposition of Three-mode Photon-added Trio Coherent State

Quang Dat Tran, Sy Chuong Ho, Van Hung Dao, Truong Minh Duc
Author affiliations

Authors

DOI:

https://doi.org/10.15625/0868-3166/16508

Abstract

In this paper, we study some higher-order nonclassical properties of the superposition of three-mode photon-added trio coherent state such as antibunching, squeezing, and entanglement. The results show that in the case with fixed the higher-order, when increasing the numbers of added photons, the manifestation of the higher-order three-mode sum squeezing is more obvious, but the degrees of higher-order antibunching, and higher-order three-mode entanglement are more reduced. Besides, with fixed the numbers of photon addition to the superposition of three-mode photon-added trio coherent state, the higher-order nonclassical properties as antibunching and entanglement are more pronounced, but three-mode sum squeezing is more decreased when increasing the number of the higher-order.

 

Downloads

Download data is not yet available.

References

A. Pathak and M. Garcia, Control of higher order antibunching, Appl. Phys. B 84 (2006) 479.

J. Aasi et al, Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light, Nature Photonics 7 (2013) 613.

S. L. Braunstein and P. V. Loock, Quantum information with continuous variables, Rev. Mod. Phys. 77 (2005) 513.

B. C. Sanders, Superposition of two squeezed vacuum states and interference effects, Phys. Rev. A 39 (1989) 4284.

T. Gantsog and R. Tanas, Phase properties of the two-mode squeezed vacuum states, Phys. Lett. A 152 (1991) 251.

G. S. Agarwal, Nonclassical statistics of fields in pair coherent states, J. Opt. Soc. Am. B 5 (1988) 1940.

X. M. Liu, Even and odd charge coherent states and their non-classical properties, Phys. Lett. A 279 (2001) 123.

N. B. An and T. M. Duc, Trio coherent states, J. Opt. B: Quan. Semi. Opt. 4 (2002) 80.

H. Fan and G. Yu, Three-mode squeezed vacuum state in Fock space as an entangled state, Phys. Rev. A 65 (2002) 033829.

G. S. Agarwal and A. Biswas, Quantitative measures of entanglement in pair-coherent states, J. Opt. B: Quantum Semiclass. Opt. 7 (2005) 350.

T. M. Duc, J. Noh and K. Kim, Entanglement criteria in inequality for pair and trio coherent states, Adv. Nat. Sci. 9 (2008) 123.

T. M. Duc, T. Q. Dat, and H. S. Chuong, Quantum entanglement and teleportation in superposition of multiplephoton- added two-mode squeezed vacuum state, Int. J. Mod. Phys. B 34 (2020) 2050223.

L. Y. Hu, F. Jia, and Z. M. Zhang, Entanglement and nonclassicality of photon-added two-mode squeezed thermal state, J. Opt. Soc. Am. B 29 (2012) 1456.

T. M. Truong, H. T. X. Nguyen and A. B. Nguyen, Sum squeezing, difference squeezing, higher-order antibunching and entanglement of two-mode photon-added displaced squeezed states, Int. J. Theor. Phys. 53 (2013) 899.

D. M. Truong, C. S. Ho, and D. Q. Tran, Detecting nonclassicality and non-Gaussianity by theWigner function and quantum teleportation in photon-added-and-subtracted two modes pair coherent state, J. Comput. Electron. (2021).

T. M. Duc and T. Q. Dat, Enhancing nonclassical and entanglement properties of trio coherent states by photonaddition, Optik 210 (2020) 164479.

T. Q. Dat and T. M. Duc, Nonclassical properties of the superposition of three-mode photon-added trio coherent state, Int. J. Theor. Phys. 59 (2020) 3206.

Y. Wang, W. S. Bao, H. Z. Bao, C. Zhou, M. S. Jiang and H. W. Li, High-dimensional quantum key distribution with the entangled single-photon-added coherent state, Phys. Lett. A 381 (2017) 1393.

L. Fan and M. S. Zubairy, Quantum illumination using non-Gaussian states generated by photon subtraction and photon addition, Phys. Rev. A 98 (2018) 012319.

S. Y. Lee and H. Nha, Quantum state engineering by a coherent superposition of photon subtraction and addition, Phys. Rev. A 82 (2010) 053812.

A. Zavatta et al, Quantum-to-classical transition with single-photon-added coherent states of light, Science 306 (2004) 660.

A. Karlsson and M. Bourennane, Quantum teleportation using three-particle entanglement, Phys. Rev. A 58 (1998) 4394.

M. Hillery and V. Buzek, and A. Berthiaume, Quantum secret sharing, Phys. Rev. A 59 (1999) 1829.

N. B. An and J. Kim, Joint remote state preparation, J. Phys. B: At. Mol. Opt. Phys. 41 (2008) 095501.

T. Q. Dat and T. M. Duc, Higher-order nonclassical and entanglement properties in photon-added trio coherent state, Hue Uni. J. Sci.: Nat. Sci. 129 (2020) 49.

C. T. Lee, Many-photon antibunching in generalized pair coherent states, Phys. Rev. A 41 (1990) 1569.

P. Gupta, P. N. Pandey and A Pathak, Higher order antibunching is not a rare phenomenon, J. Phys. B: At. Mol. Opt. Phys. 39 (2006) 1137.

N. B. An, Multimode higher-order antibunching and squeezing in trio coherent states, J. Opt. B: Quantum Semiclass. Opt. 4 (2002) 222.

T. M. Duc, D. H. Dinh and T. Q. Dat, Higher-order nonclassical properties of nonlinear charge pair cat states, J. Phys. B: At. Mol. Opt. Phys. 53 (2020) 025402.

A. Kumar and P. S. Gupta, Sum squeezing in four-wave sum frequency generation, Opt. Commun. 136 (1997) 441.

L. M. Duan, G. Giedke, J. I. Cirac, and P. Zoller, Inseparability Criterion for Continuous Variable Systems, Phys. Rev. Lett. 84 (2000) 2722.

E. Shchukin E and W. Vogel, Publisher’s note: Inseparability criteria for continuous bipartite quantum states [Phys. Rev. Lett. 95, 230502 (2005)], Phys. Rev. Lett. 95 (2005) 230502.

M. Hillery and M. S. Zubairy, Entanglement conditions for two-mode states, Phys. Rev. Lett. 96 (2006) 050503.

T. M. Duc and N. T. X. Hoai, Entanglement criterion for bipartite quantum states: applications, Comm. Phys. 20 (2010) 233.

Downloads

Published

27-03-2022

How to Cite

[1]
Q. D. Tran, S. C. Ho, V. H. Dao, and T. M. Duc, “Higher-order Nonclassicality in Superposition of Three-mode Photon-added Trio Coherent State”, Comm. Phys., vol. 32, no. 2, p. 141, Mar. 2022.

Issue

Section

Papers