Silica-based Photonic Crystal Fiber for Supercontinuum Generation in the Anomalous Dispersion Region: Measurement and Simulation
Author affiliations
DOI:
https://doi.org/10.15625/0868-3166/17121Keywords:
nonlinear optics, Photonic crystal fiber, anomalous dispersion, supercontinuum generationAbstract
We report on numerical simulation and experimental study of the supercontinuum (SC) generation in the anomalous dispersion region of photonic crystal fiber (PCF). The results show that a flat and stable spectrum with bandwidth of 130 nm around the central pump wavelength was achieved with an input power of 4.0 W. Although the measured spectrum is slightly different from the numerical ones, a good consistency can be recognized in the major sideband positions and spectral width. In addition, the chromatic dispersion of air silica PCF was measured at visible and near-infrared wavelengths using the Mach-Zehnder interferometer configuration and then verified by comparison with simulated results.
Downloads
References
T. Stiehm, R. Schneider, J. Kern, I. Niehues, S. Michaelis de Vasconcellos and R. Bratschitsch, Supercontinuum second harmonic generation spectroscopy of atomically thin semiconductors, Rev. Sci. Instrum. 90 (2019) 083102. https://doi.org/10.1063/1.5100593
H. Wang, C. P. Fleming and A. M. Rollins, Ultrahigh-resolution optical coherence tomography at 1.15 µm using photonic crystal fiber with no zero-dispersion wavelengths, Opt. Express. 15 (2007) 3085. https://doi.org/10.1364/OE.15.003085
C. Poudel and C. F. Kaminski, Supercontinuum radiation in fluorescence microscopy and biomedical imaging applications, J. Opt. Soc. Am. B. 36 (2019) A139. https://doi.org/10.1364/JOSAB.36.00A139
J. Villatoro, M. P. Kreuzer, R. Jha, V. P. Minkovich, V. Finazzi, G. Badenes et al., Photonic crystal fiber interferometer for chemical vapor detection with high sensitivity, Opt. Express. 17 (2009) 1447. https://doi.org/10.1364/OE.17.001447
A. M. Heidt, A. Hartung, G. W. Bosman, P. Krok, E. G. Rohwer, H. Schwoerer and H. Bartelt, Coherent octave spanning near-infrared and visible supercontinuum generation in all-normal dispersion photonic crystal fibers, Opt. Express. 19(2011) 3775. https://doi.org/10.1364/OE.19.003775
L. E. Hooper, P. J. Mosley, A. C. Muir, W. J. Wadsworth and J. C. Knight, Coherent supercontinuum generation in photonic crystal fiber with all-normal group velocity dispersion, Opt. Express. 19 (2011) 4902. https://doi.org/10.1364/OE.19.004902
G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki et al., Supercontinuum generation spanning over three octaves from UV to 3.85 μm in a fluoride fiber, Opt. Lett. 34 (2009) 2015. https://doi.org/10.1364/OL.34.002015
J. C. Hernandez-Garcia, J. M. Estudillo-Ayala, R. I. Mata-Chavez, O. Pottiez, R. Rojas-Laguna and E. Alvarado-Mendez, Experimental study on a broad and flat supercontinuum spectrum generated through a system of two PCFs, Laser Phys. Lett. 10 (2013) 075101. https://doi.org/10.1088/1612-2011/10/7/075101
J. M. Dudley and S. Coen, Coherence properties of supercontinuum spectra generated in photonic crystal and tapered optical fibers, Opt. Lett. 27 (2002) 1180. https://doi.org/10.1364/OL.27.001180
N. Li, F. Wang, C. Yao, Z. Jia, L. Zhang, Y. Feng et al., Coherent supercontinuum generation from 1.4 to 4 μm in a tapered fluorotellurite microstructured fiber pumped by a 1980 nm femtosecond fiber laser, Appl. Phys. Lett. 110 (2017) 061102. https://doi.org/10.1063/1.4975678
Y. Huang, H. Yang, S. Zhao, Y. Mao and S. Chen, Design of photonic crystal fibers with flat dispersion and three zero dispersion wavelengths for coherent supercontinuum generation in both normal and anomalous regions, Results in Phys. 23 (2021) 104033. https://doi.org/10.1016/j.rinp.2021.104033
K. Park, J. Na, J. Kim and Y. Jeong, Numerical study on supercontinuum generation in an active highly nonlinear photonic crystal fiber with anomalous dispersion, IEEE J. Quantum Electron. 56 (2020) 6800109. https://doi.org/10.1109/JQE.2020.2974519
F. R. Arteaga-Sierra, A. Antikainen and G. P. Agrawal, Dynamics of soliton cascades in fiber amplifiers, Opt. Lett. 41 (2016) 5198. https://doi.org/10.1364/OL.41.005198
C. Lei, A. Jin, R. Song, Z. Chen and J. Hou, Theoretical and experimental research of supercontinuum generation in an ytterbium-doped fiber amplifier, Opt. Express. 24 (2016) 9237. https://doi.org/10.1364/OE.24.009237
T. Li, Optical Fiber Communications: Fiber Fabrication, Academic Press (San Diego), 1985.
V. C. Lanh, A. Anuszkiewicz, A. Ramaniuk, R. Kasztelanic, K. D. Xuan, V. C. Long et al., Supercontinuum generation in photonic crystal fibres with core filled with toluene, J. Opt. 19 (2017) 125604. https://doi.org/10.1088/2040-8986/aa96bc
H. Saghaei, P. Elyasi and R. Karimzadeh, Design, fabrication, and characterization of Mach-Zehnder interferometers, Photonics Nanostructures - Fundam. Appl. 37 (2019) 100733. https://doi.org/10.1016/j.photonics.2019.100733
H. L. Van, R. Buczynski, V. C. Long, M. Trippenbach, K. Borzycki, A. N. Manh et al., Measurement of temperature and concentration influence on the dispersion of fused silica glass photonic crystal fiber infiltrated with water-ethanol mixture, Opt. Commun. 407 (2018) 417. https://doi.org/10.1016/j.optcom.2017.09.059
Mode Solution, Lumerical Solutions, https://www.lumerical.com/tcad-products/mode/
G. P. Agrawal, Nonlinear Fiber Optics 5th edition, Academic Press (Oxford), 2013. https://doi.org/10.1016/B978-0-12-397023-7.00011-5
S. Ramachandran, S. Ghalmi, J. W. Nicholson, M. F. Yan, P. Wisk, E. Monberg et al., Anomalous dispersion in a solid, silica-based fiber, Opt. Lett. 31 (2006) 2532. https://doi.org/10.1364/OL.31.002532
F. Ö. Ilday, J. R. Buckley, H. Lim, F. W. Wise and W. G. Clark, Generation of 50-fs, 5-nJ pulses at 1.03 µm from a wave-breaking-free fiber laser, Opt. Lett. 28 (2003) 0146. https://doi.org/10.1364/OL.28.001365
Downloads
Published
How to Cite
Issue
Section
License
Communications in Physics is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Copyright on any research article published in Communications in Physics is retained by the respective author(s), without restrictions. Authors grant VAST Journals System (VJS) a license to publish the article and identify itself as the original publisher. Upon author(s) by giving permission to Communications in Physics either via Communications in Physics portal or other channel to publish their research work in Communications in Physics agrees to all the terms and conditions of https://creativecommons.org/licenses/by-sa/4.0/ License and terms & condition set by VJS.


