Development of Multi-axis Differential Optical Absorption Spectroscopy System and its Application in Measuring Atmospheric NO\(_2\) Volume Mixing Ratio in Hanoi
Author affiliations
DOI:
https://doi.org/10.15625/0868-3166/17173Keywords:
volume mixing ratioAbstract
Monitoring the concentration and distribution of nitrogen dioxide NO2 in urban environment is of great interest because of the importance of this gaseous pollutant in affecting air quality. In this paper we present the development of a multi-axis differential optical absorption spectroscopy instrument capable of sensitively detecting NO2. The passive instrument collects the sun light scattered by the air molecules and aerosols in the atmosphere and measures the spectrum using a highly sensitive portable spectrometer. The viewing direction of the instrument is controlled through a motor and can be changed continuously. Data analysis of the measured spectra allows us to simultaneously determine the differential scant column density of NO2 and oxygen dimer O4. From the accurately known concentration of O4, the effective optical path length of scattered sun light near the horizontal direction could be derived, which in turn provides an estimate the concentration of NO2. The measured data show that the concentration of NO2 in Hanoi is in the range ~1.5 ppb. We also present the detection of formaldehyde HCHO and possible detection of glyoxal CHOCHO. Our sensitive instrument opens up the possibility to monitor the concentration of other molecular species of interest in urban environment of Hanoi.
Downloads
References
U. Platt, J. Stutz, 2008, Differential Optical Absorption Spectroscopy: Principles and Applications, Springer Verlag Heidelberg
S.F. Schreier, A. Richter, E. Peters, M. Ostendorf, A. W. Schmalwieser, P. Weihs, and J. P. Burrows, Dual ground-based MAX-DOAS observations in Vienna, Austria: Evaluation of horizontal and temporal NO2, HCHO, and CHOCHO distributions and comparison with independent data sets, Atmos. Environ. X 5 (2020) 100059. DOI. https://doi.org/10.1016/j.aeaoa.2019.100059
E. Dimitropoulou, F. Hendrik, G. Pinardi, M. M. Friedrich, A. Merlaud, F. Tack, H. D. Longueville, C. Fayt, C. Hermans, Q. Laffineur, F. Fierens and M. V. Roozendael, Validation of TROPOMI tropospheric NO2 columns using dual-scan multi-axis differential optical absorption spectroscopy (MAX-DOAS) measurements in Uccle, Brussels, Atmos. Meas. Tech. 13 (2020) 5165. DOI: https://doi.org/10.5194/amt-13-5165-2020, 2020
A. Rosu, D.E. Constantin, M. Voiculescu, M. Arseni, A. Merlaud, M. V. Roozendael and P. L. Georgescu, Observations of atmospheric NO2 using a new low-cost MAX-DOAS system, Atmosphere 11 (2020) 129. DOI: https://doi.org/10.3390/atmos11020129
QDOAS data analysis software https://uv-vis.aeronomie.be/software/QDOAS/LastChanges.php
R. Sinreich, A. Merten, L. Molina, and R. Volkamer, Parameterizing radiative transfer to convert MAX-DOAS dSCDs into near-surface box-averaged mixing ratios, Atmos. Meas. Tech. 6 (2013) 1521. DOI: https://doi.org/10.5194/amt-6-1521-2013
Y. Wang, A. Li, P.H. Xie, T. Wagner, H. Chen, W. Q. Liu and J. G. Liu, A rapid method to derive horizontal distributions of trace gases and aerosols near the surface using multi-axis differential optical absorption spectroscopy, Atmos. Meas. Tech. 7 (2014) 1663. DOI: https://doi.org/10.5194/amt-7-1663-2014
J.F. Grainger and J. Ring, 1962, Anomalous Fraunhofer line profiles, Nature 193 (1962) 762. DOI: https://doi.org/10.1038/193762a0
A. Merlaud, M. Van Roozendael, J. van Gent, C. Fayt, J. Maes, X. Toledo-Fuentes, O. Ronveaux, and M. De Mazière, DOAS measurements of NO2 from an ultralight aircraft during the earth challenge expedition, Atmos. Meas. Tech. 5 (2012) 2057.DOI: https://doi.org/10.5194/amt-5-2057-2012
A. C. Vandaele, C. Hermans, P. C. Simon, M. van Roozendael, J. M. Guilmot, M. Carleer and R. Colin, Fourier transform measurement of NO2 absorption cross-section in the visible range at room temperature, J. Atmos. Chem. 25 (1996) 289. DOI: https://doi.org/10.1007/BF00053797
K. Bogumil, J. Orphal, T. Homann, S. Voigt, P. Spietz, O. C. Fleischmann, A. Vogel, M. Hartmann, H. Kromminga, H. Bovensmann, J. Frerick and J. P. Burrows, Measurements of molecular absorption spectra with the SCIAMACHY pre-flight model: instrument characterization and reference data for atmospheric remote-sensing in the 230–2380 nm region, J. Photochem. Photobiol. A 157 (2003) 167. DOI: https://doi.org/10.1016/S1010-6030(03)00062-5
C. Hermans et al. at http://spectrolab.aeronomie.be/o2.htm
L.S. Rothman, A. Barbe, D. Chris Benner, L.R.Brown, C.Camy-Peyret, M. R. Carleer, K. Chance, C. Clerbaux, V. Dana, V. M. Devi, A. Fayt, J.-M. Flaud, R. R. Gamache, A. Goldman, D.Jacquemart, K. W. Jucks, W. J. Lafferty, J.-Y. Mandin, S.T. Massie, V. Nemtchinov, D. A. Newnham, A. Perrin, C. P. Rinsland, J. Schroeder, K. M. Smith, M. A. H. Smith, K.Tang, R. A.Toth, J.Vander Auwera, P.Varanasi and K. Yoshinoa, The HITRAN molecular spectroscopic database: edition of 2000 including updates through 2001, J. Quant. Spec. Rad. Trans. 82 (2003) 5. DOI: https://doi.org/10.1016/S0022-4073(03)00146-8
H. K. Roscoe, Van Roozendael, M. Fayt, et al., Intercomparison of slant column measurements of NO2 and O4 by MAX-DOAS and zenith-sky UV and visible spectrometers, Atmos. Meas. Tech. Discuss. 3 (2010) 3383. DOI. https://doi.org/10.5194/amt-3-1629-2010
R. Volkamer, P. Spietz, J. Burrows and U. Platt, High-resolution absorption cross-section of glyoxal in the UV–vis and IR spectral ranges, J. Photochem. Photobiol. 172 (2005) 35. DOI. https://doi.org/10.1016/j.jphotochem.2004.11.011
Downloads
Published
How to Cite
Issue
Section
License
Communications in Physics is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Copyright on any research article published in Communications in Physics is retained by the respective author(s), without restrictions. Authors grant VAST Journals System (VJS) a license to publish the article and identify itself as the original publisher. Upon author(s) by giving permission to Communications in Physics either via Communications in Physics portal or other channel to publish their research work in Communications in Physics agrees to all the terms and conditions of https://creativecommons.org/licenses/by-sa/4.0/ License and terms & condition set by VJS.


