In silico study of the influences of cooling rates on the phase transition of water inside the carbon nanotube under different ambient pressures
Author affiliations
DOI:
https://doi.org/10.15625/0868-3166/17301Keywords:
carbon nanotube, phase transition, MD simulationAbstract
By using MD simulation method, this study shows the influences of cooling rates on the solidifying temperature of water inside a single-wall-carbon-nanotube under different ambient pressures when cooling the systems from 300 K down to 200 K. Our results showed that the more rapid cooling rate of the systems creates more disruptive and dramatic phase transitions. Moreover, we also found that the lower of pressures correlates to the more dramatic phase transitions of water, regardless of cooling rate. This study generally provides more insight into water behavior in the SWCNT with variations in ambient conditions.
Downloads
References
K. V. Agrawal, S. Shimizu, L. W. Drahushuk, D. Kilcoyne and M. S. Strano, Observation of extreme phase transition temperatures of water confined inside isolated carbon nanotubes, Nat. Nanotechnol. 12 (2017) 267.
K. Koga, G. T. Gao, H. Tanaka, X. C. Zeng, Formation of ordered ice nanotubes inside carbon nanotubes, Nature 412 (2001) 802
J. H. Walther, K. Ritos, E. R. Cruz-Chu, C. M. Megaridis and P. Koumoutsakos, Barriers to superfast water transport in carbon nanotube membranes, Nano Lett. 13 (2013) 1910.
D. Takaiwa, I. Hatano, K. Koga and H. Tanaka, Phase diagram of water in carbon nanotube, Proc. Natl. Acad. Sci. 105 (2008) 39.
J. Shiomi, T. Kimura and S. Maruyama, Molecular dynamics of Ice-nanotube formation inside carbon nanotubes, J. Phys. Chem. C 111 (2007) 12188.
Y. Maniwa, H. Kataura, M. Abe, S. Suzuki, Y. Achiba, H. Kira and K. Matsuda, Phase transition in confined water inside carbon nanotubes, J. Phys. Soc. Jpn. 71 (2002) 2863.
M. Yutaka, K. Hiromichi, A. Masatoshi, A. Udaka, S. Suzuki, Y. Achiba, H. Kira, K. Matsuda, H. Kadowaki and Y. Okabe, Ordered water inside carbon nanotubes: formation of pentagonal to octagonal ice-nanotubes, Chem. Phys. Lett. 401 (2005) 534.
J. Bai, J. Wang and X. C. Zeng, Multiwalled ice helixes and ice nanotubes, Proc. Natl. Acad. Sci. 103 (2006) 19664.
T. Ohba, S. I. Taira, K. Hata, K. Kanekoc and H. Kanoh Predominant nanoice growth in single-walled carbon nanotubes by water-vapor loading, RSC Adv. 2 (2012) 3634.
A. I. Kolesnikov, J. M. Zanotti, C. K. Loong, P. Thiyagarajan, A. P. Moravsky, R. O. Loutfy and C. J. Burnham Anomalously soft dynamics of water in a nanotube: A revelation of nanoscale confinement, Phys. Rev. Lett. 93 (2004) 035503.
K. Matsuda, T. Hibi, H. Kadowaki, H. Kataura and Y. Maniwa, Water dynamics inside single-wall carbon nanotubes: NMR observations, Phys. Rev. B 74 (2006) 073415.
H. Kyakuno, K. Matsuda, H. Yahiro, Y. Inami, T. Fukuoka, Y. Miyata, K. Yanagi, Y. Maniwa, H. Kataura, T. Saito, M. Yumura and S. Iijima, Confined water inside single-walled carbon nanotubes: Global phase diagram and effect of finite length, J. Chem. Phys. 134 (2011) 244501.
V. V. Hoang, Cooling rate effects on structure of amorphous graphene, Phys. B Condens. Matter 456 (2015) 50.
V. Van Hoang and N.T. Long, Amorphous silicene - a view from molecular dynamics simulation, J. Phys. Condens. Matter 28 (2016) 19540.
N. H. Giang and V. V. Hoang, Influences of cooling rate on formation of amorphous germanene, Physica E: Low-dimensional Systems and Nanostructure 126 (2021) 114492.
W. Humphrey, A. Dalke and K. Schulten, VMD molecular dynamics, J. Molec. Graphics 14 (1996) 33.
L. Mart´ınez, R. Andrade, E. G. Birgin and J. M. Mart´ınez, Packmol: A package for building initial configurations for molecular dynamics simulations, J. Comput. Chem. 30 (2009) 2157.
A.D. MacKerell Jr, D. Bashford, M. L. D. R. Bellott, R. L. Dunbrack Jr, J. D. Evanseck, M. J. Field, S. Fischer, J. Gao, H. Guo, S. Ha, D. Joseph-McCarthy, L. Kuchnir, K. Kuczera, F. T. K. Lau, C. Mattos, S. Michnick, T. Ngo, D. T. Nguyen, B. Prodhom, W. E. Reiher, B. Roux, M. Schlenkrich, J. C. Smith, R. Stote, J. Straub, M. Watanabe, J. Wi´orkiewicz-Kuczera, D. Yin, and M. Karplus, All-atom empirical potential for molecular modeling and dynamics studies of proteins, J. Phys. Chem. 102 (1998) 3586.
S. Stuart, A. B. Tutein and J. Harrison, A reactive potential for hydrocarbons with intermolecular interactions, J. Chem. Phys. 112 (2000) 6472.
M. Raju, A. V. Duin and M. Ihme, Phase transitions of ordered ice in graphene nanocapillaries and carbon nanotubes, Sci. Rep. 8 (2018) 3851.
Downloads
Published
How to Cite
Issue
Section
License
Communications in Physics is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Copyright on any research article published in Communications in Physics is retained by the respective author(s), without restrictions. Authors grant VAST Journals System (VJS) a license to publish the article and identify itself as the original publisher. Upon author(s) by giving permission to Communications in Physics either via Communications in Physics portal or other channel to publish their research work in Communications in Physics agrees to all the terms and conditions of https://creativecommons.org/licenses/by-sa/4.0/ License and terms & condition set by VJS.


