Monte Carlo investigation for an Ising model with competitive magnetic interactions in the dominant ferromagnetic-interaction regime
Author affiliations
DOI:
https://doi.org/10.15625/0868-3166/18109Keywords:
Ising model, Monte Carlo simulation, phase separation, magnetic interactionsAbstract
We apply classical Monte Carlo simulation to examine the thermodynamic properties of perovskites described by the Ising model with competitive magnetic interactions. By correspondingly adjusting the ferromagnetic-interaction and antiferromagnetic-interaction probabilities, \(p\) and \((1-p)\), in the regime \(p \ge 0.5\), the temperature dependence of magnetization, total energy, spin susceptibility, and specific heat consistently show a ferromagnetic to paramagnetic (FM-PM) phase transition at a critical temperature \(T_c\). Besides, the inverse susceptibility is confirmed to follow Curie-Weiss's law above another critical temperature \(T_{CW}\). By increasing the FM interaction probability, we have observed the FM-PM critical temperature \(T_c\) shifted to the higher value while the Curie-Weiss critical temperature \(T_{CW}\) moves to the lower. The different values between these two critical temperatures imply the inhomogeneity of the systems having phase separation, thus in agreement with the increased homogeneity with increasing \(p\).
Downloads
References
begin{thebibliography}{1}
bibitem{He2007} C. He, M. A. Torija, J. Wu, J. W. Lynn, H. Zheng, J. F. Mitchell, and C. Leighton, Phys. Rev. B {bf 76} (2007) 014401.
bibitem{Itoh1994} M. Itoh, I. Natori, S. Kubota, and K. Motoya, J. Phys. Soc. Jpn. {bf 63} (1994), 1486.
bibitem{Wu2003} J. Wu and C. Leighton, Phys. Rev. B {bf 67} (2003), 174408.
bibitem{Griffiths1969} R. B. Griffiths, Phys. Rev. Lett. {bf 23} (1969) 17.
bibitem{Dagotto2001} E. Dagotto, T. Hotta, A. Moreo, Phys. Rep. {bf 344} (2001) 1.
bibitem{Burgy2001} J. Burgy, M. Mayr, V. Martin-Mayor, A. Moreo, and E. Dagotto, Phys. Rev. Lett. {bf 87} (2001) 277202.
bibitem{Cong2003} B.T. Cong, P. N. A. Huy, N. H. Long and D. D. Long, Bull. Mater. Sci. {bf 26} (2003) 151.
bibitem{Bach2015} Giang H. Bach, Oanh K.T. Nguyen, Chinh V. Nguyen, and Cong T. Bach, Mat. Trans. {bf 56} (2015) 1320.
bibitem{Bach2020} O. K. T. Nguyen, P. H. Nguyen, L. D. Dang, C. T. Bach, and G. H. Bach, Physica B 583 (2020) 412012.
bibitem{Schiffer2002} R. Mahendiran, A. Maignan, S. Hebert, C. Martin, M. Hervieu, B. Raveau, J. F. Mitchell, and P. Schiffer, Phys. Rev. Lett. {bf 89} (2002) 286602.
bibitem{Fronte2008} C. Frontera, P. Beran, N. Bellido, J. Hernández Velasco, and J. L. García–Muñoz, J. Appl. Phys. {bf 103} (2008) 07F719.
bibitem{Phong2018} L. T. T. Ngan, L. V. Bau, N. M. An, L. T. H. Phong, N. V. Dang, and I.-J. Lee, Metall. Mater. Trans. A {bf 49} (2018) 385.
bibitem{Das2019} S. Banik, I. Das, J. Magn. Magn. Mater. {bf 469} (2019) 40.
bibitem{Binder1997} K. Binder and D.W. Heermann., {it Monte Carlo Simulation in Statistical Physics}, Springer, Berlin, 1997.
bibitem{Metro1953} N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, and E. Teller, J. Chem. Phys. {bf 29} (1953) 1087.
bibitem{Landau1937} L.D. Landau, Zh. Eksp. Teor. Fiz. {bf 7} (1937) 19.
bibitem{Jung2010} M.M. Saber, M. Egilmez, A.I. Mansour, I. Fan, K. H. Chow, and J. Jung, Phys. Rev. B {bf 82} (2010), 172401.
end{thebibliography}
Downloads
Published
How to Cite
Issue
Section
License
Communications in Physics is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Copyright on any research article published in Communications in Physics is retained by the respective author(s), without restrictions. Authors grant VAST Journals System (VJS) a license to publish the article and identify itself as the original publisher. Upon author(s) by giving permission to Communications in Physics either via Communications in Physics portal or other channel to publish their research work in Communications in Physics agrees to all the terms and conditions of https://creativecommons.org/licenses/by-sa/4.0/ License and terms & condition set by VJS.
Funding data
-
National Foundation for Science and Technology Development
Grant numbers 103.01-2019.324


