\(\mu-e\) conversion in a model of electroweak scale right-handed neutrino mass
Author affiliations
DOI:
https://doi.org/10.15625/0868-3166/19043Keywords:
$\mu-e$ conversion in nuclei, lepton flavor violation process, elementary particle physics, physics beyond the SMAbstract
We perform a detailed analysis of the \(\mu-e\) conversion within an extended version of the standard model (SM) with mirror symmetry and low energy of the electroweak scale of the type I seesaw neutrino mass generation. After a brief introduction to the model, we derive the \(\mu-e\) conversing ratio at one-loop approximation, in which the running inside are W gauge boson or singly charged scalars accompanying with neutrinos, and neutral scalars with new leptons. We focus, mainly, on predictions of observable possibilities and constraints set on relevant couplings from the \(\mu-e\) conversion in nuclei.
Downloads
References
P. Q. Hung, A Model of electroweak-scale right-handed neutrino mass, Phys. Lett. B 649 (2007) 275.
P. Minkowski, μ →eγ at a Rate of One Out of 109 Muon Decays?, Phys. Lett. B 67 (1977) 421.
M. Gell-Mann, P. Ramond and R. Slansky, Complex Spinors and Unified Theories, Conf. Proc. C 790927 (1979) 315.
T. Yanagida, Horizontal gauge symmetry and masses of neutrinos, Conf. Proc. C 7902131 (1979) 95.
R. N. Mohapatra and G. Senjanovic, Neutrino Masses and Mixings in Gauge Models with Spontaneous Parity Violation, Phys.
Rev. D 23 (1981) 165.
P. Q. Hung, T. Le, V. Q. Tran and T.-C. Yuan, Lepton Flavor Violating Radiative Decays in EW-Scale νR Model: An Update,
JHEP 12 (2015) 169.
V. Hoang, P. Q. Hung and A. S. Kamat, Non-sterile electroweak-scale right-handed neutrinos and the dual nature of the
-GeV scalar, Nucl. Phys. B 896 (2015) 611.
V. Hoang, P. Q. Hung and A. S. Kamat, Electroweak precision constraints on the electroweak-scale right-handed neutrino
model, Nucl. Phys. B 877 (2013) 190 [1303.0428].
P. Q. Hung, Electroweak-scale mirror fermions, mu —> e gamma and tau —> mu gamma, Phys. Lett. B 659 (2008) 585.
C.-F. Chang, P. Q. Hung, C. S. Nugroho, V. Q. Tran and T.-C. Yuan, Electron Electric Dipole Moment in Mirror Fermion
Model with Electroweak Scale Non-sterile Right-handed Neutrinos, Nucl. Phys. B 928 (2018) 21.
P. Q. Hung, T. Le, V. Q. Tran and T.-C. Yuan, Muon-to-Electron Conversion in Mirror Fermion Model with Electroweak Scale
Non-Sterile Right-handed Neutrinos, Nucl. Phys. B 932 (2018) 471.
D. N. Dinh, The μ →eγ decay in an EW-scale non-sterile RH neutrino model, Eur. Phys. J. C 82 (2022) 295.
D. N. Dinh, Muon anomalous magnetic dipole moment in a low scale type I see-saw model, Nucl. Phys. B 994 (2023) 116306.
SINDRUM II Collaboration, Test of lepton flavor conservation in mu —> e conversion on titanium, Phys. Lett. B 317 (1993) 631.
SINDRUM II Collaboration, A Search for muon to electron conversion in muonic gold, Eur. Phys. J. C 47 (2006) 337.
R. J. Barlow, The PRISM/PRIME project, Nucl. Phys. B Proc. Suppl. 218 (2011) 44.
MU2E Collaboration, Mu2e Technical Design Report, 1501.05241.
COMET Collaboration, COMET Phase-I Technical Design Report, PTEP 2020 (2020) 033C01.
M. S. Chanowitz and M. Golden, Higgs Boson Triplets With M (W) = M (Z) cosθω, Phys. Lett. B 165 (1985) 105.
R. Alonso, M. Dhen, M. B. Gavela and T. Hambye, Muon conversion to electron in nuclei in type-I seesaw models, JHEP 01 (2013) 118.
A. G. Akeroyd, M. Aoki and H. Sugiyama, Lepton Flavour Violating Decays tau —> anti-l ll and mu —> e gamma in the
Higgs Triplet Model, Phys. Rev. D 79 (2009) 113010.
D. N. Dinh, A. Ibarra, E. Molinaro and S. T. Petcov, The μ −e Conversion in Nuclei, μ →eγ,μ →3e Decays and TeV Scale
See-Saw Scenarios of Neutrino Mass Generation, JHEP 08 (2012) 125.
D. N. Dinh, D. T. Huong, N. T. Duy, N. T. Nhuan, L. D. Thien and P. Van Dong, Flavor changing in the flipped trinification, Phys. Rev. D 99 (2019) 055005.
R. Kitano, M. Koike and Y. Okada, Detailed calculation of lepton flavor violating muon electron conversion rate for various
nuclei, Phys. Rev. D 66 (2002) 096002.
Downloads
Published
How to Cite
Issue
Section
License
Communications in Physics is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Copyright on any research article published in Communications in Physics is retained by the respective author(s), without restrictions. Authors grant VAST Journals System (VJS) a license to publish the article and identify itself as the original publisher. Upon author(s) by giving permission to Communications in Physics either via Communications in Physics portal or other channel to publish their research work in Communications in Physics agrees to all the terms and conditions of https://creativecommons.org/licenses/by-sa/4.0/ License and terms & condition set by VJS.


