Random-anisotropy effects in the second-order phase transition of the 2D Blume-Capel model

Author affiliations

Authors

  • Quan D. Nguyen Faculty of Physics, University of Science, Vietnam National University, 334 Nguyen Trai Street, Thanh Xuan, Hanoi, Vietnam https://orcid.org/0009-0000-5317-8441
  • Son N. Bui Faculty of Physics, University of Science, Vietnam National University, 334 Nguyen Trai Street, Thanh Xuan, Hanoi, Vietnam https://orcid.org/0009-0002-4210-6674
  • Phong H. Nguyen Faculty of Physics, University of Science, Vietnam National University, 334 Nguyen Trai Street, Thanh Xuan, Hanoi, Vietnam https://orcid.org/0000-0001-6080-7090
  • Bach H. Giang Faculty of Physics, University of Science, Vietnam National University, 334 Nguyen Trai Street, Thanh Xuan, Hanoi, Vietnam https://orcid.org/0000-0002-1516-1363

DOI:

https://doi.org/10.15625/0868-3166/21614

Keywords:

Blume-Capel model, random anisotropy, effective field theory, differential operator, second-order phase transition

Abstract

We report on the second-order phase transition of two-dimensional (2D) magnetic materials under the influence of random anisotropy in the context of the Blume-Capel model employing an effective field theory and the differential operator method. By analyzing the temperature dependence of magnetization, we thoroughly explore the second-order ferromagnetic-to-paramagnetic (FM-PM) phase transition at the critical temperature \(T_C\). When the magnitude of the random anisotropy \(D\) and its probability \(p\) is sufficiently large, the magnetization equation becomes divergent and unsolvable at a critical temperature, indicating the emergence of a tricritical point and a first-order phase transition. Additionally, we produce a phase diagram for the second-order phase transition presenting the relation between the critical temperature and the anisotropy amplitude at various probabilities.

Downloads

Download data is not yet available.

References

[1] O. Amhoud, N. Zaim, M. Kerouad and A. Zaim, Monte Carlo study of magnetocaloric properties and hysteresis behavior of the double perovskite Sr2CrIrO6, Phys. Lett. A 384 (2020) 126443.

[2] G. D. Ngantso, Y. E. Amraoui, A. Benyoussef and A. E. Kenz, Effective field study of Ising model on a double perovskite structure, J. Magn. Magn. Mater. 423 (2017) 337.

[3] O. E. Rhazouani, A. Benyoussef and A. E. Kenz, Phase diagram of the double perovskite Sr2CrReO6: Effective-field theory, J. Magn. Magn. Mater. 377 (2015) 319.

[4] O. K. T. Nguyen, P. H. Nguyen, N. T. Nguyen, C. T. Bach, H. D. Nguyen and G. H. Bach, Monte Carlo investigation for an Ising model with competitive magnetic interactions in the dominant ferromagnetic-interaction regime, Commun. Phys. 33 (2023) 205.

[5] I. Lawrie and S. Sarbach, Phase Transitions and Critical Phenomena, vol. 9. Academic Press, 1984.

[6] A. Maritan, M. Cieplak, M. R. Swift, F. Toigo and J. R. Banavar, Random-anisotropy Blume-Emery-Griffiths model, AIP Conf. Proc. 286 (1992) 231.

[7] C. Buzano, A. Maritan and A. Pelizzola, A cluster variation approach to the random-anisotropy Blume-Emery-Griffiths model, J. Phys.: Condens. Matter 6 (1994) 327.

[8] M. Blume, Theory of the first-order magnetic phase change in UO2, Phys. Rev. 141 (1966) 517.

[9] H. Capel, On the possibility of first-order phase transitions in Ising systems of triplet ions with zero-field splitting, Physica 32 (1966) 966.

[10] H. Capel, On the possibility of first-order transitions in Ising systems of triplet ions with zero-field splitting II, Physica 33 (1967) 295.

[11] H. Capel, On the possibility of first-order transitions in Ising systems of triplet ions with zero-field splitting III, Physica 37 (1967) 423.

[12] A. Benyoussef, T. Biaz, M. Saber and M. Touzani, The spin-1 Ising model with a random crystal field: the mean-field solution, J. Phys. C: Solid State Phys. 20 (1987) 5349.

[13] E. Albayrak, The spin-1 Blume-Capel model with random crystal field on the Bethe lattice, Phys. A 390 (2011) 1529.

[14] D. Lara and J. Plascak, General spin Ising model with diluted and random crystal field in the pair approximation, Phys. A 260 (1998) 443.

[15] A. Benyoussef and H. Ez-Zahraouy, Magnetic properties of a transverse spin-1 Ising model with random crystal-field interactions, J. Phys.: Condens. Matter 6 (1994) 3411.

[16] I. Puha and H. Diep, Random-bond and random-anisotropy effects in the phase diagram of the Blume-Capel model, J. Magn. Magn. Mater. 224 (2001) 85.

[17] N. S. Branco and B. M. Boechat, Real-space renormalization-group study of the two-dimensional Blume-Capel model with a random crystal field, Phys. Rev. B 56 (1997) 11673.

[18] E. Bezerra, M. G. da Silva and J. R. de Sousa, First-order transition of the spin-1 Blume-Capel model with random anisotropy using effective-field theory, Phys. A 615 (2023) 128510.

[19] S. Yan and L. Deng, Thermodynamic properties of bond dilution Blume-Capel model with random crystal field, Phys. A 308 (2002) 301.

[20] C. E. I. Carneiro, V. B. Henriques and S. R. Salinas, Mean-field phase diagram of the spin-1 Ising ferromagnet in a Gaussian random crystal field, J. Phys. A: Math. Gen. 23 (1990) 3383.

[21] H. B. Callen, A Note on Green Functions and the Ising Model, Phys. Lett. 4 (1963) 161.

[22] R. Honmura and T. Kaneyoshi, Contribution to the new type of effective-field theory of the Ising model, J. Phys. C: Solid State Phys. 12 (1979) 3979.

[23] J. Tucker, Generalized Van der Waerden identities, J. Phys. A: Math. Gen. 27 (1994) 659.

[24] T. Kaneyoshi, Phase diagrams of a spin-one Ising model with a random crystal field in the correlated effective-field treatment, Phys. Status Solidi B 170 (1992) 313.

[25] L. Onsager, Crystal statistics. I. A two-dimensional model with an order-disorder transition, Phys. Rev. 65 (1944) 117.

[26] A. Siqueira and I. Fittipaldi, New effective-field theory for the Blume-Capel model, Phys. A 138 (1986) 592.

Downloads

Published

08-01-2025

How to Cite

[1]
Q. D. Nguyen, S. N. Bui, H. P. Nguyen, and H. G. Bach, “Random-anisotropy effects in the second-order phase transition of the 2D Blume-Capel model”, Comm. Phys., vol. 35, no. 1, p. 65, Jan. 2025.

Issue

Section

Papers

Similar Articles

<< < 25 26 27 28 29 30 31 32 33 34 > >> 

You may also start an advanced similarity search for this article.