Reaction-rate function of proton-deuteron radiative capture within potential model

Author affiliations

Authors

DOI:

https://doi.org/10.15625/0868-3166/21631

Keywords:

radiatvie capture, potential model, proton-deuteron, astrophysical S-factor

Abstract

The proton-deuteron (pD) radiative capture reaction plays a crucial role in primordial nucleosynthesis. The astrophysical S-factor is calculated using a phenomenological potential model, considering both electric dipole (E1) and magnetic dipole (M1) transitions. The resulting S-factor is found to be in good agreement with recent experimental data. In addition, an approximate polynomial expression for the reaction-rate function is provided.

Downloads

Download data is not yet available.

References

[1] C. Wu, The Big Bang nucleosynthesis abundances of the light elements using improved thermonuclear reaction rates, Gen. Relativ. Gravit. 55 (2023) 48.

[2] V. Mossa, K. Stöckel, F. Cavanna, F. Ferraro, M. Aliotta, F. Barile et al., The baryon density of the Universe from an improved rate of deuterium burning, Nature 587 (2020) 210.

[3] R. J. Cooke, M. Pettini and C. C. Steidel, One percent determination of the primordial deuterium abundance, Astrophys. J. 855 (2018) 102.

[4] N. Aghanim, Y. Akrami, M. Ashdown, J. Aumont, C. Baccigalupi, M. Ballardini et al., Planck 2018 results-VI. Cosmological parameters, Astronomy & Astrophysics 641 (2020) A6.

[5] A. Coc, Primordial nucleosynthesis, J. Phys.: Conf. Ser. 665 (2016) 012001.

[6] N. A. Dao, T. A. Hoang, H. T. Do and T. H. Nguyen, Analysis of E1 transition in pd radiative capture within potential model, HCMUE J. Sci. 21 (2024) 424.

[7] N. L. Anh, D. N. Anh, L. T. Quyen, N. D. Phuc, P. T. H. Chau and T. D. T. Le, Magnetic dipole transition in proton-deuteron radiative capture at BBN energies within potential model, Phys. Scr. 99 (2024) 065026.

[8] http://parthenope.na.infn.it/.

[9] N. Le Anh and B. Minh Loc, Low-energy 7Li(n,γ)8Li and 7Be(p,γ)8B radiative capture reactions within the Skyrme Hartree-Fock approach, Phys. Rev. C 106 (2022) 014605.

[10] G. M. Griffiths, E. A. Larson and L. P. Robertson, The reaction d(p,γ)3He below 50 keV, Can. J. Phys. 41 (1963) 724.

[11] G. J. Schmid, R. M. Chasteler, C. M. Laymon, H. R. Weller, R. M. Prior and D. R. Tilley, Polarized proton capture by deuterium and the 2H(p, γ)3He astrophysical S factor, Phys. Rev. C 52 (1995) R1732.

[12] L. Ma, H. J. Karwowski, C. R. Brune, Z. Ayer, T. C. Black, J. C. Blackmon et al., Measurements of 1H(d→,γ)3He and 2H(p→,γ)3He at very low energies, Phys. Rev. C 55 (1997) 588.

[13] C. Casella, H. Costantini, A. Lemut, B. Limata, R. Bonetti, C. Broggini et al., First measurement of the d(p,γ)3He cross section down to the solar Gamow peak, Nuclear Physics A 706 (2002) 203.

[14] V. M. Bystritsky, S. Gazi, J. Huran, G. N. Dudkin, A. R. Krylov, A. Lysakov et al., Studying the D(p, γ)3He reaction in zirconium deuteride within the proton energy range of 9–35 keV, Phys. Part. Nucl. Lett. 12 (2015) 550.

[15] I. Tišma, M. Lipoglavšek, M. Mihovilović, S. Markelj, M. Vencelj and J. Vesić, Experimental cross section and angular distribution of the 2H(p, γ)3He reaction at Big-Bang nucleosynthesis energies, Eur. Phys. J. A 55 (2019) 137.

[16] S. Turkat, S. Hammer, E. Masha, S. Akhmadaliev, D. Bemmerer, M. Grieger et al., Measurement of the 2H(p,γ)3He S factor at 265–1094 keV, Phys. Rev. C 103 (2021) 045805.

[17] L. E. Marcucci, G. Mangano, A. Kievsky and M. Viviani, Implication of the proton-deuteron radiative capture for big bang nucleosynthesis, Phys. Rev. Lett. 116 (2016) 102501.

Downloads

Published

11-03-2025

How to Cite

[1]
N. A. Dao, H. T. Do, and L. A. Nguyen, “Reaction-rate function of proton-deuteron radiative capture within potential model”, Comm. Phys., vol. 35, no. 1, p. 51, Mar. 2025.

Issue

Section

Papers

Funding data

Similar Articles

<< < 4 5 6 7 8 9 10 11 12 13 > >> 

You may also start an advanced similarity search for this article.