Forthcoming

Qualitative investigation of electrical conductivity in three-layer graphene structures

Linh D. K., Oanh L. T. K., Lanh N. N. T., Giao L. N. H.
Author affiliations

Authors

  • Linh D. K. Computational Physics Key Laboratory, Department of Physics, Ho Chi Minh City University of Education, 280 An Duong Vuong Street, Ward 4, District 5, Ho Chi Minh City, Vietnam
  • Oanh L. T. K. Faculty of Applied Technology, School of Technology, Van Lang University, Ho Chi Minh City, Vietnam
  • Lanh N. N. T. Computational Physics Key Laboratory, Department of Physics, Ho Chi Minh City University of Education, 280 An Duong Vuong Street, Ward 4, District 5, Ho Chi Minh City, Vietnam
  • Giao L. N. H. Computational Physics Key Laboratory, Department of Physics, Ho Chi Minh City University of Education, 280 An Duong Vuong Street, Ward 4, District 5, Ho Chi Minh City, Vietnam

DOI:

https://doi.org/10.15625/0868-3166/21634

Keywords:

Correlated impurities, Monolayer graphene (MLG), Double-layer system, Multi random phase approximation

Abstract

We study the electrical conductivity \(\sigma_1, \sigma_2, \sigma_3\) of a three-layer graphene system made of parallel-placed monolayer graphene layers. This investigation consists of three steps. The first step is calculating the effective interactions \(W_{11}, W_{22}, W_{33}\) between impurities and electrons by using the multi-component random phase approximation. The second step is defining the dependence of \(W_{11}^2, W_{22}^2, W_{33}^2\) on interlayer distance \(d\). The last step is identifying the proportional relation between \(W_{11}^2, W_{22}^2, W_{33}^2\) and \(\sigma_1, \sigma_2, \sigma_3\). Based on the obtained results, we deduce the rules of change of \(\sigma_1, \sigma_2, \sigma_3\) when \(d\) vary. The final result is, hence, the basis for calculating the dependence of conductivity in a three-layer graphene system on other parameters.

Downloads

Download data is not yet available.

References

[1] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang and S. V. Dubonos et al., Electric field effect in atomically thin carbon films, Science 306 (2004) 666.

[2] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson and I. V. Grigorieva et al., Two-dimensional gas of massless Dirac fermions in graphene, Nature 438 (2005) 197.

[3] S. V. Morozov, K. S. Novoselov, M. I. Katsnelson, F. Schedin, D. Jiang and A. K. Geim, Giant intrinsic carrier mobilities in graphene and its bilayer, Phys. Rev. Lett. 100 (2008) 016602.

[4] E. McCann and V. I. Fal'ko, Landau-level degeneracy and quantum Hall effect in a graphite bilayer, Phys. Rev. Lett. 96 (2006) 086805.

[5] S. D. Sarma, E. H. Hwang and E. Rossi, Theory of carrier transport in bilayer graphene, Phys. Rev. B 81 (2010) 161407.

[6] D. T. K. Phuong and N. V. Men, Plasmon modes in 3-layer graphene structures: Inhomogeneity effects, Phys. Lett. A 383 (2019) 125971.

[7] B. Amorim and N. M. R. Peres, On Coulomb drag in double layer systems, J. Phys. Condens. Matter 24 (2012) 335602.

[8] N. M. R. Peres, J. M. B. L. D. Santos and A. H. C. Neto, Coulomb drag and high-resistivity behavior in double-layer graphene, EPL 95 (2011) 18001.

[9] F. Parhizgar and R. Asgari, Magnetoresistance of a double-layer hybrid system in a tilted magnetic field, Phys. Rev. B 90 (2014) 035438.

[10] D. V. Tuan and N. Q. Khanh, Plasmon modes of double-layer graphene at finite temperature, Phys. E Low-Dimens. Syst. Nanostruct. 54 (2013) 267.

[11] A. Principi, M. Carrega, R. Asgari, V. Pellegrini and M. Polini, Plasmons and Coulomb drag in Dirac-Schrödinger hybrid electron systems, Phys. Rev. B 86 (2012) 085421.

[12] G. G. de la Cruz, Role of metallic substrate on the plasmon modes in double-layer graphene structures, Solid State Commun. 213-214 (2015) 6.

[13] M. Rodriguez-Vega, J. Fischer, S. D. Sarma and E. Rossi, Ground state of graphene heterostructures in the presence of random charged impurities, Phys. Rev. B 90 (2014) 035406.

[14] N. V. Men and N. Q. Khanh, Plasmon modes in graphene–GaAs heterostructures, Phys. Lett. A 381 (2017) 3779.

[15] D. T. K. Phuong and N. V. Men, Collective excitations in gapped graphene–GaAs double-layer structures, Solid State Commun. 314-315 (2020) 113942.

[16] A. Gamucci, D. Spirito, M. Carrega, B. Karmakar, A. Lombardo, M. Bruna et al., Anomalous low-temperature Coulomb drag in graphene-GaAs heterostructures, Nat. Commun. 5 (2014) 5824.

[17] B. Scharf and A. Matos-Abiague, Coulomb drag between massless and massive fermions, Phys. Rev. B 86 (2012) 115425.

[18] N. Q. Khanh and D. K. Linh, Electrical conductivity of Dirac/Schrödinger hybrid electron systems at finite temperature, Superlattices Microstruct. 116 (2018) 181.

[19] J. Zhang and E. Rossi, Chiral superfluid states in hybrid graphene heterostructures, Phys. Rev. Lett. 111 (2013) 086804.

[20] J. H. et al., Coulomb drag and counterflow Seebeck coefficient in bilayer-graphene double layers, Nano Energy 40 (2017) 42.

[21] A. Perali, D. Neilson and A. R. Hamilton, High-temperature superfluidity in double-bilayer graphene, Phys. Rev. Lett. 110 (2013) 146803.

[22] D. K. Linh and N. Q. Khanh, Electrical conductivity of bilayer-graphene double layers at finite temperature, Superlattices Microstruct. 114 (2018) 406.

[23] D. K. Linh and N. Q. Khanh, Charged impurity scattering in bilayer-graphene double layers, Int. J. Mod. Phys. B 34 (2020) 2050254.

[24] G. Grosso and G. P. Parravicini, Solid State Phys., Elsevier, 2nd ed., 2014.

Downloads

Published

16-08-2025

How to Cite

[1]
L. Dang, K. Oanh, L. Nguyen, and Giao, “Qualitative investigation of electrical conductivity in three-layer graphene structures”, Comm. Phys., vol. 35, no. 3, p. 235, Aug. 2025.

Issue

Section

Papers

Similar Articles

<< < 12 13 14 15 16 17 18 19 20 21 > >> 

You may also start an advanced similarity search for this article.