Effects of mass imbalance on metal-insulator transitions in the ionic Hubbard model

Author affiliations

Authors

  • Nguyen Thi Hai Yen Institute of Physics, Vietnam Academy of Science and Technology, 10 Dao Tan, Hanoi 11108, Vietnam https://orcid.org/0000-0002-3640-8505
  • Hoang Anh Tuan Institute of Physics, Vietnam Academy of Science and Technology, 10 Dao Tan, Hanoi 11108, Vietnam https://orcid.org/0000-0001-8498-0541
  • Le Duc Anh Faculty of Physics, Hanoi National University of Education, 136 Xuan Thuy, Hanoi, Vietnam

DOI:

https://doi.org/10.15625/0868-3166/22080

Keywords:

ionic Hubbard model, metal-insulator transition, dynamic mean field theory

Abstract

We investigated the effects of mass imbalance on the metal-insulator phase diagram in the half-filled ionic Hubbard model using dynamical mean field theory (DMFT) and the equations of motion (EOM) method to solve the impurity problem. Our results show that the band insulator region changes less significantly compared to the Mott insulator region, while the metallic region shrinks as the mass imbalance increases. Additionally, the staggered charge density was calculated and analyzed for various values of mass imbalance, providing further insight into the critical Coulomb interaction values that govern phase transitions.

Downloads

Download data is not yet available.

References

[1] B. DeMarco and D. S. Jin, Onset of fermi degeneracy in a trapped atomic gas, Science 285 (1999) 1703–1706.

[2] M. Greiner et al., Quantum phase transition from a superfluid to a mott insulator in a gas of ultracold atoms,

Nature 415 (2002) 39–44.

[3] C. Chin et al., Feshbach resonances in ultracold gases, Rev. Mod. Phys. 82 (2010) 1225.

[4] S. Inouye et al., Observation of feshbach resonances in a bose-einstein condensate, Phys. Rev. A 44 (1991) 1910.

[5] S. Taie et al., Realization of a su(2)xsu(6) system of fermions in a cold atomic gas, Phys. Rev. Lett. 105 (2010)

190401.

[6] F. Abudinen´ et al., Hydrodynamic expansion of a strongly interacting fermi-fermi mixture, Phys. Rev. Lett. 106

(2011) 115304.

[7] P. Fazekas, Lecture Notes on Electron Correlation and Magnetism, vol. 5. World Scientific, 1999.

[8] P. S. Riseborough and J. M. Lawrence, Mixed valent metals, Rep. Prog. Phys. 79 (2016) 084501.

[9] M. A. Cazalilla et al., Two-component fermi gas on internal-state-dependent optical lattices, Phys. Rev. Lett. 95

(2005) 226402

[10] T. H. Y. Nguyen et al., Mott transition in the mass imbalanced ionic hubbard model at half filling, Communications

in Physics 29 (2019) NO.3SI.

[11] M. Fabrizio and othes, From band insulator to mott insulator in one dimension, Phys. Rev. Lett. 83 (1999) 2014.

[12] P. S. Riseborough and J. M. Lawrence, Quantum monte carlo study of the one-dimensional ionic hubbard model,

Phys. Rev. B, 63 (2001) 235108.

[13] H. R. K. A. Garg and M. Randeria, Can correlations drive a band insulator metallic?, Phys. Rev. Lett. 97 (2006)

04640.

[14] L. Craco et al., Electronic phase transitions in the half-filled ionic hubbard model, Phys. Rev. B 78 (2008) 075121.

[15] A. T. Hoang et al., Conductivity in the half-filled disordered hubbard model: A typical medium dynamical meanfield study, Mod. Phys. Lett. B 38 (2024) 2450226.

[16] P. A. L. Y. Meir, N. S. Wingreen, Transport through a strongly interacting electron system: Theory of periodic

conductance oscillations, Phys. Rev. Lett. 66 (1991) 3048.

[17] D. A. L. et al, Mass-imbalanced hubbard model in optical lattice with site-dependent interactions, Phys. B 532

(2018) 204.

[18] D. L. A. T. Hoang, T. T. T. Tran, Two-component fermions in optical lattice with spatially alternating interactions,

Physic. B 485 (2016) 121–126

Downloads

Published

29-05-2025

How to Cite

[1]
T. H. Y. Nguyen, A. T. Hoang, and D. A. Le, “Effects of mass imbalance on metal-insulator transitions in the ionic Hubbard model”, Comm. Phys., vol. 35, no. 2, p. 125, May 2025.

Issue

Section

Papers

Similar Articles

<< < 20 21 22 23 24 25 26 27 28 29 > >> 

You may also start an advanced similarity search for this article.