Composites of conducting polymers and nanoparticles for thin-film-multilayers OLEDs, OSCs and gas sensors

Nguyen Nang Dinh
Author affiliations

Authors

  • Nguyen Nang Dinh University of Engineering and Technology, Vietnam National University Hanoi, 144 Xuan Thuy Road, Cau Giay District, Hanoi 10000, Vietnam

DOI:

https://doi.org/10.15625/0868-3166/22081

Keywords:

nanocomposites, heterojunction organic light-emitting diodes, organic solar cells, gas sensors

Abstract

In this work is a general view on nanostructured polymeric composite materials used for preparation and characterization of a group of organic optoelectronic devices, such as Organic Light-Emitting Diodes (OLEDs), Solar Cells (OSCs) and Gas Sensors (OGSs). From recent references, this work gives informations on structural, morphological, electrical and optical properties as well as perfomance behaviour of the nanocomposite devies. The analyzed data have demonstrated that nanostructured composite materials consisting of conducting polymers (CP) and nanoparticles have significantly contributed to enhance both the performance parameters and working time of devices. The presence of inorganic nanoparticles in polymers has strongly influenced all physical properties of the polymers. In this work we concentrated to analyze the most interesting properties of the OLEDs, OSCs and OGSs, such as electro-luminescence, photo-electrical conversion, and gas sensing. This review work also shows in general, the discovery source of the CPs, some typical CPs and their composites used for the fabrication of nanocomposite devices which aim at different practical purposes.

Downloads

Download data is not yet available.

References

[1] J. S. Salafsky, Exciton dissociation, charge transport, and recombination in ultrathin, conjugated polymer, TiO$_2$ nanocrystal intermixed composites, Phys. Rev. B 59 (1999) 10885.

[2] W. U. Huynh, J. J. Dittmer and A. P. Alivisatos, Hybrid nanorod, polymer solar cells, Science 295 (2002) 2425.

[3] T. M. Petrella, M. Tamborra, A. Agostiano, M. Striccoli, G. L. Guerriero, A. Cola et al., ce{TiO2} nanocrystals – MEH-PPV composite thin films as photoactive material, Thin Solid Films 451-452 (2004) 64.

[4] V. M. Burlakov, K. Kawata, H. E. Assender, G. A. D. Briggs, A. Ruseckas and I. D. W. Samuel, Discrete hopping model of exciton transport in disordered media, Phys. Rev. B 72 (2005) 075206.

[5] M. Zhang, S. Höfle, J. Czolk, A. Mertens and A. Colsmann, All-solution processed transparent organic light emitting diodes, Nanoscale 7 (2015) 20009.

[6] I. A. Rashid, M. A. Al-Maadeed, M. A. Wahab, M. A. Al-Maadeed, M. A. Wahab and M. A. Al-Maadeed, Electrically conductive epoxy/polyaniline composite fabrication and characterization for electronic applications, J. Reinf. Plast. Compos. 41 (2021) 34.

[7] E. Carlos, R. Martins, E. Fortunato and R. Branquinho, Solution combustion synthesis: towards a sustainable approach for metal oxides, Chem. Eur. J. 26 (2020) 375.

[8] D. Bokov, A. Jalil, M. Chupradit, M. S. Ansari, M. K. Amini and M. K. Amini, Nanomaterial by sol-gel method: synthesis and application, Adv. Mater. Sci. Eng. 2021 (2021) 5102014.

[9] Y. H. Jang, S. Hwang, S. B. Chang, J. Ku and D. S. Chung, Acid dissociation constants of melamine derivatives from density functional theory calculations, J. Phys. Chem. A 113 (2009) 13036.

[10] A. Elschner, S. Kirchmeyer, W. Lövenich, U. Merker and K. Reuter, PEDOT: Principles and Applications of an Intrinsically Conductive Polymer. CRC Press, Taylor & Francis Group, 2011, 10.1201/b10318.

[11] H. Letheby, On the production of a blue substance by the electrolysis of sulphate of aniline, J. Chem. Soc. 15 (1862) 161.

[12] F. F. Runge, Poggendorfs ann. phys. u. chemie, Poggendorfs Ann. Phys. u. Chemie 31 (1834) 513.

[13] G. Schiavon, S. Sitran and G. Zotti, A simple two-band electrode for in situ conductivity measurements of polyconjugated conducting polymers, Synth. Met. 32 (1989) 209.

[14] L. Groenendaal, F. Jonas, D. Freitag, H. Pielartzik and J. R. Reynolds, Poly(3,4-ethylenedioxythiophene) and its derivatives: Past, present, and future, Adv. Mater. 12 (2000) 481.

[15] W. J. Feast, J. Tsibouklis, K. L. Pouwer, L. Groenendaal and E. W. Meijer, Synthesis, processing and material properties of conjugated polymers, Polymer 37 (1996) 5017.

[16] C. K. Chiang, C. R. F. Jr., Y. W. Park, A. J. Heeger, H. Shirakawa, E. J. Louis et al., Electrical conductivity in doped polyacetylene, Phys. Rev. Lett. 39 (1977) 1098.

[17] H. Shirakawa, Die entdeckung der polyacetylenfilme – der beginn des zeitalters leitfähiger polymere, Angew. Chem. 113 (2001) 2642.

[18] K. Yamaguchi and T. Tsujioka, Selective metal-vapor deposition on solvent evaporated polymer surfaces, Thin Solid Films 597 (2015) 220.

[19] S. Ren, E. K. Stefanakos and D. Y. Goswami, Inorganic-organic hybrid solar cell: Bridging quantum dot to conjugated polymer nanowires, Nano Lett. 11 (2011) 3998.

[20] K. J. Klabunde, Nanoscale Materials in Chemistry. John Wiley & Sons, 2009.

[21] V. Mann and V. Rastogi, Dielectric nanoparticles for the enhancement of oled light extraction efficiency, Opt. Commun. 387 (2017) 202.

[22] C. Y. Park and B. Choi, Enhanced light extraction from bottom emission OLEDs by high refractive index nanoparticle scattering layer, Nanomaterials 9 (2019) 1241.

[23] N. D. Nguyen, H. C. Le, T. C. T. Tran, Q. T. Tran and V. T. Vo, Enhancement of current-voltage characteristics of multilayer organic light emitting diodes by using nanostructured composite films, J. Appl. Phys. 105 (2009) 093518.

[24] J. Ouyang, C. W. Chu, F. C. Chen, Q. Xu and Y. Yang, On the mechanism of conductivity enhancement in poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) film through solvent treatment, Polymer 45 (2004) 8443.

[25] P. Tehrani, L. A. A. Pettersson and O. Inganäs, The effect of ph on the electrochemical over-oxidation in pedot:pss, Solid State Ionics 177 (2007) 3521.

[26] B. A. Al-Asbahi, Influence of SiO$_{2}$/TiO$_{2}$ nanocomposite on the optoelectronic properties of pfo/meh-ppv-based oled devices, Polymers 10 (2018) 800.

[27] C. Cuerva, J. A. Campo, M. Cano, B. Arredondo, B. Romero, E. Otón et al., Bis(pyridylpyrazolate)platinum(ii): a mechanochromic complex useful as a dopant for colour-tunable polymer OLEDs, New J. Chem. 39 (2015) 8467.

[28] M. Belhaj, C. Dridi and H. Elhouichet, PFE: ZnO hybrid nanocomposites for oled applications: Fabrication and photophysical properties, J. Lumin. 157 (2015) 53.

[29] C. Borriello, A. Mauro, A. Accardo, M. Barra, A. Cassinese, L. D. Stefano et al., Optoelectronic properties of OLEDs based on CdSe/ZnS quantum dots and F8BT, Phys. Status Solidi C 12 (2015) 1416.

[30] R. B. Choudhry and S. Kumar, Optimum chemical states and localized electronic states of SnO$_{2}$ integrated PTh-SnO$_{2}$ nanocomposites as excelling emissive layer (EML), Opt. Mater. 131 (2022) 112736.

[31] H. Kaur, S. Sundriyal and S. K. Mehta, Luminescent metal-organic frameworks and their composites: Potential future materials for organic light emitting displays, Coord. Chem. Rev. 401 (2019) 213077.

[32] Y. Zhou, Y. Wang, Y. Zhang, Y. Wang, Y. Li, Y. Li et al., Effects of PEDOT:PSS:GO composite hole transport layer on the luminescence of perovskite light-emitting diodes, RSC Adv. 10 (2020) 26381.

[33] R. Sorrentino, A. Minotto, M. Patrini, M. Meneghetti, F. Meinardi, R. Tubino et al., Hybrid MoS$_{2}$/PEDOT:PSS transporting layers for interface engineering of nanoplatelet-based light-emitting diodes, Dalton Trans. 50 (2021) 9208.

[34] G. L. Ong, S. S. Lim, S. S. Lim, S. S. Lim, S. S. Lim, S. S. Lim et al., A brief review of nanoparticles-doped PEDOT:PSS, nanocomposite for oled and opv, Nanotechnol. Rev. 11 (2022) 1870.

[35] Z. Georgiopoulou, A. K. Andreopoulou, D. Tasis, D. Tasis, D. Tasis, D. Tasis et al., Plasmonic enhanced oled efficiency upon silver-polyoxometalate core-shell nanoparticle integration into the hole injection/transport layer, Sci. Rep. 14 (2024) 28888.

[36] I. E. Kuznetsov, A. V. Akkuratov and P. A. Troshin, Polymer nanocomposites for solar cells: research trends and perspectives, in Nanomaterials for Solar Cell Applications, pp. 557--600, Elsevier, (2019).

[37] T. T. Tran, Q. T. Tran, V. T. Vo and N. D. Nguyen, Enhancement of power efficiency and stability of P3HT-based organic solar cells under elevated operating-temperatures by using a nanocomposite photoactive layer, J. Nanomater. (2015) Article ID 463565.

[38] V. T. Nguyen, V. S. Tran, Q. T. Tran, T. T. Tran and N. D. Nguyen, Development of laser beam diffraction technique for determination of thermal expansion coefficient of polymeric thin films, VNU J. Sci. Math. - Phys. 31 (2015) 21.

[39] D. Meneses-Rodríguez, P. P. Horley, J. González-Hernández, Y. V. Vorobiev and P. N. Gorley, Photovoltaic solar cells performance at elevated temperatures, Sol. Energy 78 (2005) 243.

[40] D. Ouyang, Z. Huang and W. C. H. Choy, Solution-processed metal oxide nanocrystals as carrier transport layers in organic and perovskite solar cells, Adv. Funct. Mater. 29 (2019) 1.

[41] Z. Zheng, S. Zhang, J. Wang, J. Zhang, D. Zhang, Y. Zhang et al., Exquisite modulation of ZnO nanoparticle electron transporting layer for high-performance fullerene-free organic solar cell with inverted structure, J. Mater. Chem. A 7 (2019) 3570.

[42] H. Zhou, Q. Chen, G. Li, S. Luo, T.-B. Song, C. Duan et al., Interface engineering of highly efficient perovskite solar cells, Science 345 (2014) 542.

[43] U. Kwon, J. H. Yun, S. H. Lee and S. H. Im, Solution-processible crystalline NiO nanoparticles for high-performance planar perovskite photovoltaic cells, Sci. Rep. 6 (2016) 30759.

[44] S. Huang, B. Kang, L. Zhang, L. Liao and D. Zhang, Enhancing the performance of polymer solar cells using solution-processed copper doped nickel oxide nanoparticles as hole transport layer, J. Colloid Interface Sci. 535 (2019) 308.

[45] L. Feng and X. T. Hao, Photophysical behaviors at interfaces between poly(3-hexylthiophene) and zinc oxide nanostructures, Mater. Trans. 58 (2017) 1106.

[46] X. Li, D. Bi, C. Yi, J. D. Decoppet, J. Luo, S. M. Zakeeruddin et al., Efficient perovskite solar cells depending on TiO$_2$ nanorod arrays, ACS Appl. Mater. Interfaces 8 (2016) 21358.

[47] N. D. Nguyen, H. K. Kim, D. L. Nguyen, D. C. Nguyen and P. H. N. Nguyen, Characterization of performance parameters of organic solar cells with a buffer ZnO layer, Adv. Nat. Sci. Nanosci. Nanotechnol. 10 (2019) 015005.

[48] G. T. Mola, A. M. E. Sayed, M. S. Abdel-Wahab, M. M. Rashad and M. M. El-Desoky, Nanocomposite for solar energy application, Nano Hybrids Compos. 20 (2018) 90.

[49] J. Liu, S. Li, Y. Li, L. Xu, Y. Wang and Y. Xia, Recent advances of plasmonic nanoparticles and their applications, Materials (Basel) 11 (2018) 1833.

[50] R. Ganesamoorthy, G. Sathiyan and P. Sakthivel, Fullerene based acceptors for efficient bulk heterojunction organic solar cell applications, Sol. Energy Mater. Sol. Cells 161 (2017) 102.

[51] H. Choi, J.-P. Lee, S.-J. Ko, J.-W. Jung, H. Park, S. Yoo et al., Multipositional silica-coated silver nanoparticles for high-performance polymer solar cells, Nano Lett. 13 (2013) 2204.

[52] J. Wang, S. Jia, Y. Cao, W. Wang and P. Yu, Design principles for nanoparticle plasmon-enhanced organic solar cells, Nanoscale Res. Lett. 13 (2018) 211.

[53] Alamgeer, M. Tahir, M. R. Sarker, S. Ali, Ibraheem, S. Hussian et al., Polyaniline/zno hybrid nanocomposite: Morphology, spectroscopy and optimization of zno concentration for photovoltaic applications, Polymers 15 (2023) 363.

[54] Y. Bao, J. Liu, F. Kerner, N. Schlüter and D. Schröder, Magnetic nanocomposite modified hybrid hole-transport layer for constructing organic solar cells with high efficiencies, ACS Appl. Mater. Interfaces 16 (2024) 54081.

[55] T. H. Hoang, T. G. Ho, V. H. Nguyen, T. Tran and V. T. Chu, Elaboration of pd-nanoparticle decorated polyaniline films for room temperature NH3 gas sensors, Sensors Actuators, B Chem. 249 (2017) 348.

[56] I. B. Olenych, O. I. Aksimentyeva, L. S. Monastyrskii, Y. Y. Horbenko and L. I. Yarytska, Sensory properties of hybrid composites based on poly(3,4-ethylenedioxythiophene)-porous silicon-carbon nanotubes, Nanoscale Res. Lett. 10 (2015) 1.

[57] I. B. Olenych, L. S. Monastyrskii, O. I. Aksimentyeva and B. S. Sokolovskii, Humidity sensitive structures on the basis of porous silicon, Ukr. J. Phys. 56 (2011) 1198.

[58] N. N. Dinh, T. S. T. Khanh, L. M. Long, N. D. Cuong and N. P. H. Nam, Nanomaterials for organic optoelectronic devices: Organic light-emitting diodes, organics solar cells and organic gas sensors, Mater. Trans. 61 (2020) 1422.

[59] B. Jache, C. Neumann, J. Becker, B. M. Smarsly and P. Adelhelm, Towards commercial products by nanocasting: characterization and lithium insertion properties of carbons with a macroporous, interconnected pore structure, J. Mater. Chem. 22 (2012) 10787.

[60] T. S. T. Khanh, N. D. Hoa, N. V. Duy, N. D. Chien and N. V. Hieu, Ammonia gas sensing characteristic of P3HT-rGO-MWCNT composite films, Appl. Sci. 11 (2021) 6675.

[61] S. Jose, S. Das, T. R. Vakamalla and D. Sen, Electrochemical glucose sensing using molecularly imprinted polyaniline – copper oxide coated electrode, Surf. Engin. Appl. Electrochem. 58 (2022) 260.

[62] Y. Li, Y. Zhang, X. Zhang, B. Pan, Y. Wang and J. Sun, High performance gas sensors based on in-situ fabricated ZnO/polyaniline nanocomposite: the effect of morphology on the sensing properties, Sens. Actuators B: Chem. 264 (2018) 285.

[63] L. Pilan and M. Raicopol, Highly selective and stable glucose biosensors based on polyaniline/carbon nanotubes composites, UPB Sci. Bull. Ser. B 76 (2014) 155.

[64] D. Yang, Y. Li, Y. Wang, Y. Zhang, X. Zhang and J. Sun, Polyaniline-based biological and chemical sensors: Sensing mechanism, configuration design, perspective, ACS Appl. Electron. Mater. 5 (2023) 593.

[65] D. Aycan, F. Karaca and N. Alemdar, Development of hyaluronic acid-based electroconductive hydrogel as a sensitive non-enzymatic glucose sensor, Mater. Today Commun. 35 (2023) 105745.

[66] G. Wu, H. Du, D. Lee, Y. L. Cha, W. Kim, X. Zhang et al., Polyaniline/graphene-functionalized flexible waste mask sensors for ammonia and volatile sulfur compound monitoring, ACS Appl. Mater. Interfaces 14 (2022) 56056.

[67] Y. Yan, X. Zhang, Y. Li, Y. Wang and J. Sun, Conducting polymer-inorganic nanocomposite-based gas sensors: a review, Sci. Technol. Adv. Mater. 21 (2020) 768.

[68] S. Sharma, P. Sudhakara, A. A. B. Omran, J. Singh and R. A. Ilyas, Recent trends and developments in conducting polymer nanocomposites for multifunctional applications, Polymers 13 (2021) 2898.

[69] C. V. Sudheep, A. Verma, P. Jasrotia, J. J. L. Hmar, R. Gupta, A. S. Verma et al., Revolutionizing gas sensors: The role of composite materials with conducting polymers and transition metal oxides, Results Chem. 7 (2024) 101255.

Downloads

Published

01-03-2025

How to Cite

[1]
N. N. Dinh, “Composites of conducting polymers and nanoparticles for thin-film-multilayers OLEDs, OSCs and gas sensors”, Comm. Phys., vol. 35, no. 1, p. 1, Mar. 2025.

Issue

Section

Reviews

Most read articles by the same author(s)

1 2 > >> 

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.