Forthcoming

Effect of linear and quadratic coupling on dynamical parameters of an optomechanical oscillator

Linear and quadratic coupling in optomechanical oscillator

Le Tri Dat, Vinh N. T. Pham, Le Van Tan, Nguyen Duy Vy
Author affiliations

Authors

  • Le Tri Dat Nuclear Training Center, VINATOM, 140 Nguyen Tuan Str., 10000 Hanoi, Vietnam
  • Vinh N. T. Pham Department of Physics & Postgraduate Studies Office, Ho Chi Minh City University of Education, Vietnam
  • Le Van Tan \(^1\)Laboratory of Applied Physics, Science and Technology Advanced Institute, Van Lang University, Ho Chi Minh City, Vietnam; <br> \(^2\)Faculty of Applied Technology, Van Lang School of Technology, Van Lang University, Ho Chi Minh City, Vietnam
  • Nguyen Duy Vy Ton Duc Thang University https://orcid.org/0000-0001-5470-460X

DOI:

https://doi.org/10.15625/0868-3166/22195

Abstract

Dynamics of icrocantilevers are of important interest in micro-mechanical systems for enhancing the functionality and applicable range of the cantilevers in vibration transducing and highly sensitive measurement. In this study, using the semi-classical Hamiltonian formalism, we study in detail the modification of the mechanical frequency and damping rate taking into account both the linear and quadratic coupling between the mechanical oscillator and the laser field in an opto-mechanical system. It has been seen that, the linear coupling greatly enhances the modification of the effective mechanical frequency and the effective damping rate while the quadratic coupling reduces these quantities. For a MHz-frequency oscillator, the damping rate could be 10$^5$ times increased and the frequency is several times modified. These results help clarifying the origin of the modification of the susceptibility function for cooling of the mechanical mode.

Downloads

Download data is not yet available.

References

[1] P. D. Lasky, E. Thrane, Y. Levin, J. Blackman and Y. Chen, Detecting gravitational-wave memory with LIGO: Implications of GW150914, Phys. Rev. Lett. 117 (2016) 061102.

[2] J. McIver and D. Shoemaker, Discovering gravitational waves with advanced LIGO, Contemp. Phys. 61 (2020) 229.

[3] M. Tse, H. Yu, N. Kijbunchoo, A. Fernandez-Galiana, P. Dupej, L. Barsotti et al., Quantum-enhanced advanced LIGO detectors in the era of gravitational-wave astronomy, Phys. Rev. Lett. 123 (2019) 231107.

[4] S. Jung and C. S. Shin, Gravitational-wave fringes at LIGO: Detecting compact dark matter by gravitational lensing, Phys. Rev. Lett. 122 (2019) 041103.

[5] S. M. Meenehan, J. D. Cohen, S. Gröblacher, J. T. Hill, A. H. Safavi-Naeini, M. Aspelmeyer et al., Silicon optomechanical crystal resonator at millikelvin temperatures, Phys. Rev. A 90 (2014) 011803.

[6] R. W. Peterson, T. P. Purdy, N. S. Kampel, R. W. Andrews, P.-L. Yu, K. W. Lehnert et al., Laser cooling of a micromechanical membrane to the quantum backaction limit, Phys. Rev. Lett. 116 (2016) 063601.

[7] G. I. Harris, D. L. McAuslan, E. Sheridan, Y. Sachkou, C. Baker and W. P. Bowen, Laser cooling and control of excitations in superfluid helium, Nat. Phys. 12 (2016) 788–793.

[8] L. Qiu, I. Shomroni, P. Seidler and T. J. Kippenberg, Laser cooling of a nanomechanical oscillator to its zero-point energy, Phys. Rev. Lett. 124 (2020) 173601.

[9] A. M. Jayich, J. C. Sankey, B. M. Zwickl, C. Yang, J. D. Thompson, S. M. Girvin et al., Dispersive optomechanics: a membrane inside a cavity, New J. Phys. 10 (2008) 095008.

[10] D. Vitali, S. Gigan, A. Ferreira, H. R. Böhm, P. Tombesi, A. Guerreiro et al., Optomechanical entanglement between a movable mirror and a cavity field, Phys. Rev. Lett. 98 (2007) 030405.

[11] T. P. Purdy, P.-L. Yu, R. W. Peterson, N. S. Kampel and C. A. Regal, Strong optomechanical squeezing of light, Phys. Rev. X 3 (2013) 031012.

[12] I. Favero, C. Metzger, S. Camerer, D. König, H. Lorenz, J. P. Kotthaus et al., Optical cooling of a micromirror of wavelength size, Appl. Phys. Lett. 90 (2007) 104101.

[13] I. Favero, S. Stapfner, D. Hunger, P. Paulitschke, J. Reichel, H. Lorenz et al., Fluctuating nanomechanical system in a high finesse optical microcavity, Opt. Express 17 (2009) 12813.

[14] S. Stapfner, L. Ost, D. Hunger, J. Reichel, I. Favero and E. M. Weig, Cavity-enhanced optical detection of carbon nanotube Brownian motion, Appl. Phys. Lett. 102 (2013) 151910.

[15] N. D. Vy and T. Iida, Enhancing thermally induced effects on atomic force microscope cantilevers using optical microcavities, Appl. Phys. Express 9 (2016) 126601.

[16] C. M. Hoang, T. Iida, L. T. Dat, H. T. Huy and N. D. Vy, Optimal coating thickness for enhancement of optical effects in optical multilayer-based metrologies, Opt. Commun. 403 (2017) 150.

[17] V. N. T. Pham, C. M. Hoang, H. T. Huy, L. T. Dat, N. D. Vy, T. Iida et al., Theoretical study on the optimal thermal excitation of bimaterial cantilevers, Appl. Phys. Express 13 (2020) 064002.

[18] L. T. Dat, S. H. Luong, V. N. Pham, N. D. Vy and T. Iida, Radiation pressure on a graphene layer inserted inside an optical microcavity, Opt. Commun. 520 (2022) 128478.

[19] A. Xuereb and M. Paternostro, Selectable linear or quadratic coupling in an optomechanical system, Phys. Rev. A 87 (2013) 023830.

[20] P. Banerjee, S. Kalita and A. K. Sarma, Robust mechanical squeezing beyond 3dB in a quadratically coupled optomechanical system, J. Opt. Soc. Am. B 40 (2023) 1398.

[21] N. Ghorbani, A. Motazedifard and M. H. Naderi, Effects of quadratic optomechanical coupling on bipartite entanglements, mechanical ground-state cooling, and mechanical quadrature squeezing in an electro-optomechanical system, Phys. Rev. A 111 (2025) 013524.

[22] F. Marquardt, J. P. Chen, A. A. Clerk and S. M. Girvin, Quantum theory of cavity-assisted sideband cooling of mechanical motion, Phys. Rev. Lett. 99 (2007) 093902.

[23] D. Walls and G. Milburn, Quantum Optics, SpringerLink: Springer e-Books. Springer, 2008.

[24] S. Huang and G. S. Agarwal, Entangling nanomechanical oscillators in a ring cavity by feeding squeezed light, New J. Phys. 11 (2009) 103044.

[25] V. Giovannetti and D. Vitali, Phase-noise measurement in a cavity with a movable mirror undergoing quantum brownian motion, Phys. Rev. A 63 (2001) 023812.

[26] M. Paternostro, S. Gigan, M. S. Kim, F. Blaser, H. R. Böhm and M. Aspelmeyer, Reconstructing the dynamics of a movable mirror in a detuned optical cavity, New J. Phys. 8 (2006) 107.

[27] M. Abdi, S. Barzanjeh, P. Tombesi and D. Vitali, Effect of phase noise on the generation of stationary entanglement in cavity optomechanics, Phys. Rev. A 84 (2011) 032325.

[28] N. D. Vy and T. Iida, Nonlinear analysis of sub-millikelvin optomechanical cooling for extremely low noise quantum measurement, Appl. Phys. Express 8 (2015) 032801.

[29] C. H. Metzger and K. Karrai, Cavity cooling of a microlever, Nature 432 (2004) 1002.

[30] A. Xuereb and M. Paternostro, Selectable linear or quadratic coupling in an optomechanical system, Phys. Rev. A 87 (2013) 023830.

[31] Q. He, Y. Bai, F. Badshah, L. Li and H. Qi, Normal-mode splitting, sideband cooling and force sensitivity in a linear and quadratic optomechanical system with phase noise, Opt. Quan. Electron. 56 (2024) 1140.

[32] S. S. U and M. Anil Kumar, Effects of linear and quadratic dispersive couplings on optical squeezing in an optomechanical system, Phys. Rev. A 92 (2015) 033824.

Downloads

Published

25-08-2025

How to Cite

[1]
T. D. Le, V. N. T. Pham, V. T. Le, and N. D. Vy, “Effect of linear and quadratic coupling on dynamical parameters of an optomechanical oscillator: Linear and quadratic coupling in optomechanical oscillator”, Comm. Phys., vol. 35, no. 3, p. 257, Aug. 2025.

Issue

Section

Papers