Forthcoming

Numerical investigation of droplet formation in T-junction microfluidic system with a semi-NACA-shaped squeezer

Author affiliations

Authors

  • Ich Long Ngo School of Mechanical Engineering, Hanoi University of Science and Technology https://orcid.org/0000-0003-2406-5725
  • Van Nam Dao School of Materials Science and Engineering, Hanoi University of Science and Technology
  • Thi Xuan Chu School of Materials Engineering, Hanoi University of Science and Technology https://orcid.org/0000-0001-7941-4529

DOI:

https://doi.org/10.15625/0868-3166/22403

Keywords:

Microdroplet, T-junction microfluidic system, semi-NACA-shaped squeezer, Volume of Fluid

Abstract

We present a numerical investigation of droplet formation in a T-junction microfluidic system with a semi-NACA-shaped squeezer. A two-dimensional numerical model is employed to simulate the droplet formation process using the Volume of Fluid method. The integration of this semi-NACA squeezer has a positive influence on the droplet formation dynamics under identical operating conditions. By varying the squeezer size, an inverse correlation is observed between squeezer size and droplet size. Additionally, the droplet formation process in the microfluidic T-junction device is highly dependent on the viscosity ratio, with droplet size decreasing as the viscosity ratio increases. These findings contribute to a better understanding of the droplet dynamic in T-junction devices, paving the way for new applications in microfluidic technology

Downloads

Download data is not yet available.

References

[1] M. T. Y. Yamaguchi, A. Kitagawa, Y. Ogawa, Y. Mizushima and R. Igarashi, Insulin-loaded biodegradable PLGA microcapsules: initial burst release controlled by hydrophilic additives, J. Control. Release 81 (2002) 235.

[2] Y. Liu and X. Jiang, Why microfluidics? Merits and trends in chemical synthesis, Lab Chip 17 (2017) 3960.

[3] G. Muschiolik, Multiple emulsions for food use, Curr. Opin. Colloid Interface Sci. 12 (2007) 213.

[4] X.-B. Li, F.-C. Li, J.-C. Yang, H. Kinoshita, M. Oishi and M. Oshima, Study on the mechanism of droplet formation in T-junction microchannel, Chem. Eng. Sci. 69 (2012) 340.

[5] S. Sohrabi, N. Kassir and M. Keshavarz Moraveji, Droplet microfluidics: fundamentals and its advanced applications, RSC Adv. 10 (2020) 27560.

[6] A. F. G. Baroud and R. D. Charles, Dynamics of microfluidic droplets, Lab Chip 10 (2010) 2032.

[7] S. van Loo, S. Stoukatch, M. Kraft and T. Gilet, Droplet formation by squeezing in a microfluidic cross-junction, Microfluid. Nanofluid. 20 (2016) 146.

[8] A. Kovalev, A. Yagodnitsyna, G. Bartkus and A. Bilsky, Control of plug flow dynamics in microfluidic T-junction using pulsations of dispersed phase flow rate, Int. J. Thermofluids 23 (2024) 100720.

[9] Y. Zhang, J. Zhang, Z. Tang and Q. Wu, Regulation of gas-liquid Taylor flow by pulsating gas intake in micro-channel, Chem. Eng. J. 417 (2021) 129055.

[10] I.-L. Ngo, S. W. Joo and C. Byon, Effects of junction angle and viscosity ratio on droplet formation in microfluidic cross-junction, J. Fluids Eng. 138 (2016) 051202.

[11] P. Garstecki, M. J. Fuerstman, H. A. Stone and G. M. Whitesides, Formation of droplets and bubbles in a microfluidic T-junction-scaling and mechanism of break-up, Lab Chip 6 (2006) 437.

[12] K. Sripadaraja, M. N. Satyanarayan and G. Umesh, Generation of microdroplets in T-junction devices by pulsed fluid flow: Simulation studies, ISSS J. Micro. Smart Syst. 10 (2021) 103.

[13] T. Thorsen, R. W. Roberts, F. H. Arnold and S. R. Quake, Dynamic pattern formation in a vesicle-generating microfluidic device, Phys. Rev. Lett. 86 (2001) 4163.

[14] T. Nisisako, T. Torii and T. Higuchi, Droplet formation in a microchannel network, Lab Chip 2 (2002) 24.

[15] G. F. Christopher, N. N. Noharuddin, J. A. Taylor and S. L. Anna, Experimental observations of the squeezing-to-dripping transition in T-shaped microfluidic junctions, Phys. Rev. E 78 (2008) 036317.

[16] W. Wang, Z. Liu, Y. Jin and Y. Cheng, LBM simulation of droplet formation in micro-channels, Chem. Eng. J. 173 (2011) 828.

[17] A. J. Nath, D. K. Deka and S. Pati, Numerical investigation of droplet generation within a microfluidic T-junction with semicylindrical obstacle, J. Fluids Eng. 145 (2023) 011202.

[18] H. Liu and Y. Zhang, Droplet formation in microfluidic cross-junctions, Phys. Fluids 23 (2011) 082101.

[19] W. Han, X. Chen, Z. Wu and Y. Zheng, Three-dimensional numerical simulation of droplet formation in a microfluidic flow-focusing device, J. Braz. Soc. Mech. Sci. Eng. 41 (2019) 1.

[20] L. Sang, Y. Hong and F. Wang, Investigation of viscosity effect on droplet formation in T-shaped microchannels by numerical and analytical methods, Microfluid. Nanofluid. 6 (2008) 621.

[21] I. L. Ngo, T. D. Dang, C. Byon and S. W. Joo, A numerical study on the dynamics of droplet formation in a microfluidic double T-junction, Biomicrofluidics 9 (2015) 024107.

[22] D. B. Brackbill, J. U. Brackbill and C. Zemach, A continuum method for modeling surface tension, J. Comput. Phys. 100 (1992) 335354.

[23] S. Bashir, J. M. Rees and W. B. Zimmerman, Simulations of microfluidic droplet formation using the two-phase level set method, Chem. Eng. Sci. 66 (2011) 4733.

[24] D. A. Hoang, L. M. Portela, C. R. Kleijn, M. T. Kreutzer and V. van Steijn, Dynamics of droplet breakup in a T-junction, J. Fluid Mech. 717 (2013) R4.

[25] V. van Steijn, C. R. Kleijn and M. T. Kreutzer, Flows around confined bubbles and their importance in triggering pinch-off, Phys. Rev. Lett. 103 (2009) 214501.

[26] Y. Shi, G. H. Tang and H. H. Xia, Lattice Boltzmann simulation of droplet formation in T-junction and flow focusing devices, Comput. Fluids 90 (2014) 155.

[27] P. G. Menech, F. Jousse and H. A. Stone, Transition from squeezing to dripping in a microfluidic T-shaped junction, J. Fluid Mech. 595 (2008) 141.

Downloads

Published

25-08-2025

How to Cite

[1]
Ich Long Ngo, V. N. Dao, and T.-X. Chu, “Numerical investigation of droplet formation in T-junction microfluidic system with a semi-NACA-shaped squeezer”, Comm. Phys., vol. 35, no. 3, p. 277, Aug. 2025.

Issue

Section

Papers

Funding data

Similar Articles

<< < 2 3 4 5 6 7 8 9 10 11 > >> 

You may also start an advanced similarity search for this article.