Thermal lensing impact on the focal shift and optical deformation in the cutting head of 1064nm fiber lasers 1–6 kW

Author affiliations

Authors

DOI:

https://doi.org/10.15625/0868-3166/22744

Keywords:

Thermal lensing, high power laser, cutting heat, fiber laser, focus shift;, 1064 nm

Abstract

Thermal lensing is an unavoidable phenomenon in optical systems utilizing high-power lasers, including laser cutting heads, due to energy absorption-induced thermal and optical variations. This study analyzes its effects on a 1064 nm laser system (1–6 kW) using two fused silica plano-convex lenses, with focusing lens focal lengths of 125–300 mm. Simulations indicate a peak lens temperature of 952 K at 6 kW, driving focal shifts up to Δf = −45.4 mm (300 mm focal length) and relative refractive index changes of 74.5–114%. Spot diagram analysis at the focal plane indicates severe beam spreading and optical distortion when the laser power exceeds 4 kW. Proposed solutions include thermally stable materials, enhanced anti-reflective coatings, and real-time focal adjustments to optimize cutting precision.

Downloads

Download data is not yet available.

References

[1] K. Kim, M.-K. Song, S.-J. Lee, D. Shin, J. Suh and J.-D. Kim, Fundamental study on underwater cutting of 50 mm-thick stainless steel plates using a fiber laser for nuclear decommissioning, Appl. Sci. 12 (2022) 495.

[2] J. S. Shin, S. Y. Oh, H. Park, T.-S. Kim, L. Lee, C.-M. Chung et al., Underwater cutting of 50 and 60 mm thick stainless steel plates using a 6-kW fiber laser for dismantling nuclear facilities, Opt. Laser Technol. 115 (2019) 1.

[3] A. Sharma and V. Yadava, Experimental analysis of Nd-YAG laser cutting of sheet materials -- a review, Opt. Laser Technol. 98 (2018) 264.

[4] J. S. Shin, K.-H. Song, S. Y. Oh and S.-K. Park, Laser cutting studies on 10--60 mm thick stainless steels with a short focus head for nuclear decommissioning, Opt. Laser Technol. 169 (2024) 110121.

[5] A. Sen, B. Doloi and B. Bhattacharyya, Fiber laser micro-machining of engineering materials, in Non-traditional Micromachining Processes, G. Kibria, B. Bhattacharyya and J. Davim (eds.), Springer (2017).

[6] K. Zhang, S. Xiao, W. Liu, L. Chen and H. Wang, Feasibility study of an adjustable-power laser cutting head for TBM applications: focus on rock fragmentation efficiency and energy consumption, Tunnelling Underground Space Technol. 155 (2025) 106155.

[7] J. S. Shin, S. Y. Oh, H. Park, H. Kim and J. Lee, High-speed fiber laser cutting of thick stainless steel for dismantling tasks, Opt. Laser Technol. 94 (2017) 244.

[8] C. Jacinto, D. N. Messias, A. A. Andrade and P. R. R. Costa, Thermal lens and z-scan measurements: thermal and optical properties of laser glasses -- a review, J. Non-Cryst. Solids 352 (2006) 3582.

[9] A. Gatej and P. Loosen, Methods for compensation of thermal lensing based on thermo-optical (TOP) analysis, in Proceedings of SPIE, vol. 9131, pp. 109–116 (2014), DOI.

[10] L. Tatzel and F. P. León, Impact of the thermally induced focus shift on the quality of a laser cutting edge, J. Laser Appl. 32 (2020) 022013.

[11] W. M. Steen and J. Mazumder, Laser Material Processing, Springer (2010).

[12] K. Dobek, Thermal lensing: outside of the lasing medium, Appl. Phys. B 128 (2022) 18.

[13] X. Z. Liu, L. N. Liu, J. B. Zhou and H. Q. Zhang, Simulated and experimental study on temperature induced lens focal shifts, Optoelectron. Lett. 15 (2019) 245.

[14] X. Z. Liu, L. N. Liu, J. B. Zhou and H. Q. Zhang, Study on passive compensation of temperature induced thermal lenses, Optoelectron. Lett. 16 (2020) 161.

[15] N. Harrop, S. Wolf, O. Maerten and P. R. Salter, Absorption driven focus shift, in Proceedings of SPIE, vol. 9741, pp. 181–192 (2016), DOI.

[16] S. Faas, D. J. Foerster, R. Weber and J. Baumert, Determination of the thermally induced focal shift of processing optics for ultrafast lasers with average powers of up to 525 W, Opt. Express 26 (2018) 26020.

[17] Raytools, Technical specifications for tube cutting applications, Website (2025).

[18] IPG Photonics Corporation, Cutting heads brochure, Website (2019).

[19] Osprilaser, Laser cutting head overview, Website (2025).

[20] T. Gischkat, D. Schachtler, I. Stevanovic, S. Michael and F. Scholz, Substrate cleaning processes and their influence on the laser resistance of anti-reflective coatings, Appl. Sci. 10 (2020) 8496.

[21] L. Wan, J. Yang, X. Liu and Y. Zhou, Enhanced antireflective and laser damage resistance of refractive-index gradient SiO2 nanostructured films at 1064 nm, Pol. J. Chem. Technol. 26 (2024) 0014.

[22] M. H. Maleki, S. Abbasi, M. Vaezzade and H. R. Sadeghi, Improving anti-reflectivity and laser damage threshold of SiO2/ZrO2 thin films by laser shock peening at 1064 nm, Opt. Quantum Electron. 46 (2014) 1149.

[23] D. B. Leviton and B. J. Frey, Temperature-dependent absolute refractive index measurements of synthetic fused silica, in Proceedings of SPIE, vol. 6273, p. 62732K (2006), DOI.

[24] C. Z. Tan and J. Arndt, The refractive index of silica glass and its dependence on pressure, temperature, and the wavelength of the incident light, in Silicon-Based Material and Devices, pp. 51–91, Academic Press (2001), DOI.

[25] A. Kruusing, Underwater and water-assisted laser processing: Part 2—etching, cutting and rarely used methods, Opt. Lasers Eng. 41 (2004) 329.

[26] R. K. Jain, D. K. Agrawal, S. C. Vishwakarma and P. K. Mishra, Development of underwater laser cutting technique for steel and zircaloy for nuclear applications, Pramana J. Phys. 75 (2010) 1253.

Published

21-10-2025

How to Cite

[1]
D. Thanh Tung, “Thermal lensing impact on the focal shift and optical deformation in the cutting head of 1064nm fiber lasers 1–6 kW”, Comm. Phys., vol. 35, no. 4, Oct. 2025.

Similar Articles

<< < 8 9 10 11 12 13 14 15 16 17 > >> 

You may also start an advanced similarity search for this article.