Forthcoming

Fabrication, and structural instability of a van-der-Waals Fe\(_5\)GeTe\(_2\) ferromagnet

Author affiliations

Authors

DOI:

https://doi.org/10.15625/0868-3166/22759

Abstract

This work presents the solid-state reaction method used to fabricate a polycrystalline Fe5GeTe2 (FGT) sample, in which chemical reactions of precursors took place at 1000 oC in a sealed evacuated quartz ampoule. X-ray diffraction analyses indicate the monophase in the rhombohedral Rm structure of the as-prepared FGT. Unlike ZnO and spinel ferrites, FGT is unstable and easy to decompose to constitute      Fe-, Te- and Ge-related secondary materials by high-energy ball milling for a short time. Furthermore, the storage of FGT under normal atmospheric conditions for a period also leads to its decomposition. Such decompositions would directly influence the magnetic behaviors of FGT. This would limit its application potential in next-generation electronic and spintronic devices.

Downloads

Download data is not yet available.

References

[1] S. Wang, X. Liu and P. Zhou, The road for 2D semiconductors in the silicon age, Adv. Mater. 34 (2022) 2106886.

[2] A. Hirohata, K. Yamada, Y. Nakatani, I.-L. Prejbeanu, B. Diény and P. Pirro et al., Review on spintronics: Principles and device applications, J. Magn. Magn. Mater. 509 (2020) 166711.

[3] S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. von Molnár and M. L. Roukes et al., Spintronics: A spin-based electronics vision for the future, Science 294 (2001) 1488.

[4] I. Žutić, J. Fabian and S. Das Sarma, Spintronics: Fundamentals and applications, Rev. Mod. Phys. 76 (2004) 323.

[5] A. K. Geim and K. S. Novoselov, The rise of graphene, Nat. Mater. 6 (2007) 183.

[6] P. Huang, P. Zhang, S. Xu, H. Wang, X. Zhang and H. Zhang, Recent advances in two-dimensional ferromagnetism: materials synthesis, physical properties and device applications, Nanoscale 12 (2020) 2309.

[7] D. Joksas, A. AlMutairi, O. Lee, M. Cubukcu, A. Lombardo and H. Kurebayashi et al., Memristive, Spintronic, and 2D-materials-based devices to improve and complement computing hardware, Adv. Intell. Syst. 4 (2022) 2200068.

[8] M. C. Lemme, D. Akinwande, C. Huyghebaert and C. Stampfer, 2D materials for future heterogeneous electronics, Nat. Commun. 13 (2022) 1392.

[9] R. Ramesh, Materials for a sustainable microelectronics future: Electric field control of magnetism with multiferroics, J. Indian Inst. Sci. 102 (2022) 489.

[10] S. Ning, H. Liu, J. Wu and F. Luo, Challenges and opportunities for spintronics based on spin orbit torque, Fundam. Res. 2 (2022) 535.

[11] M. Schmitt, T. Denneulin, A. Kovács, T. G. Saunderson, P. Rüßmann and A. Shahee et al., Skyrmionic spin structures in layered Fe5GeTe2 up to room temperature, Commun. Phys. 5 (2022) 254.

[12] K. Kim, J. Seo, E. Lee, K.-T. Ko, B. S. Kim and B. G. Jang et al., Large anomalous Hall current induced by topological nodal lines in a ferromagnetic van der Waals semimetal, Nat. Mater. 17 (2018) 794.

[13] Q. Liu, J. Xing, Z. Jiang, Y. Guo, X. Jiang and Y. Qi et al., Layer-dependent magnetic phase diagram in FenGeTe2 (3 ≤ n ≤ 7) ultrathin films, Commun. Phys. 5 (2022) 140.

[14] S. Albarakati, C. Tan, Z.-J. Chen, J. G. Partridge, G. Zheng and L. Farrar et al., Antisymmetric magnetoresistance in van der Waals Fe3GeTe2/graphite/Fe3GeTe2 trilayer heterostructures, Sci. Adv. 5 (2019) eaaw0409.

[15] S. Ershadrad, S. Ghosh, D. Wang, Y. Kvashnin and B. Sanyal, Unusual magnetic features in two-dimensional Fe5GeTe2 induced by structural reconstructions, J. Phys. Chem. Lett. 13 (2022) 4877.

[16] A. F. May, D. Ovchinnikov, Q. Zheng, R. Hermann, S. Calder and B. Huang et al., Ferromagnetism near room temperature in the cleavable van der Waals crystal Fe5GeTe2, ACS Nano 13 (2019) 4436.

[17] Y. Guo, Y. Zhao, S. Zhou and J. Zhao, Oxidation behavior of layered FenGeTe2 (n = 3, 4, 5) and Cr2Ge2Te6 governed by interlayer coupling, Nanoscale 14 (2022) 11452.

[18] W. Xie, J. Zhang, Y. Bai, Y. Liu, H. Wang and P. Yu et al., Air stability and composition evolution in van der Waals Fe3GeTe2, APL Mater. 12 (2024) 031102.

[19] D. S. Kim, J. Y. Kee, J.-E. Lee, Y. Liu, Y. Kim and N. Kim et al., Surface oxidation in a van der Waals ferromagnet Fe3-xGeTe2, Curr. Appl. Phys. 30 (2021) 40.

[20] T. Hu, Y. Ma, L. Lu, Y. Deng, M. Wang and K. Zhu et al., Enhanced magnetic transition temperature through ferromagnetic and antiferromagnetic interaction in cobalt-substituted Fe5GeTe2, Appl. Phys. Lett. 125 (2024) 022403.

[21] A. F. May, C. A. Bridges and M. A. McGuire, Physical properties and thermal stability of Fe5-xGeTe2 single crystals, Phys. Rev. Mater. 3 (2019) 104401.

[22] H. Wu, L. Chen, P. Malinowski, B. G. Jang, Q. Deng and K. Scott et al., Reversible non-volatile electronic switching in a near-room-temperature van der Waals ferromagnet, Nat. Commun. 15 (2024) 2739.

[23] M. Joe, U. Yang and C. Lee, First-principles study of ferromagnetic metal Fe5GeTe2, Nano Mater. Sci. 1 (2019) 299.

[24] E. Nshimyimana, X. Su, H. Xie, W. Liu, R. Deng and T. Luo et al., Realization of non-equilibrium process for high thermoelectric performance Sb-doped GeTe, Sci. Bull. 63 (2018) 717.

[25] S. Kim, S. Y. Park, J. Jeong, G.-H. Kim, P. Rohani and D. S. Kim et al., Production of pristine, sulfur-coated and silicon-alloyed germanium nanoparticles via laser pyrolysis, Nanotechnology 26 (2015) 305703.

[26] A. Liu, X. Chen, Z. Zhang, Y. Jiang and C. Shi, Selective synthesis and magnetic properties of FeSe2 and FeTe2 nanocrystallites obtained through a hydrothermal co-reduction route, Solid State Commun. 138 (2006) 538.

[27] P. D. Lodhi, N. Kaurav, K. K. Choudhary and Y. K. Kuo, Temperature-dependent transport properties of a FeTe compound, Bull. Mater. Sci. 42 (2019) 269.

[28] D. H. Manh, T. D. Thanh, T. L. Phan and D. S. Yang, Towards hard-magnetic behavior of CoFe2O4 nanoparticles: a detailed study of crystalline and electronic structures, and magnetic properties, RSC Adv. 13 (2023) 8163.

[29] T.-L. Phan, Y. D. Zhang, D. S. Yang, N. X. Nghia, T. D. Thanh and S. C. Yu, Defect-induced ferromagnetism in ZnO nanoparticles prepared by mechanical milling, Appl. Phys. Lett. 102 (2013) 072408.

[30] G. Y. Khadzhai, A. L. Solovjov, M. V. Kislitsa, L. A. Paschenko, E. Nazarova and K. Buchkov et al., The effect of long-term exposure at room temperature on the thermal conductivity of the FeSe superconductor in the normal state, Low Temp. Phys. 49 (2023) 404.

[31] C. Liu, B. A. Davidson, M. Zonno, S. Zhdanovich, R. Roemer and M. Michiardi et al., Protection of air-sensitive two-dimensional van der Waals thin film materials by capping and decapping process, Synchrotron Radiat. News 36 (2023) 24.

[32] K. Yi, Y. Wu, L. An, Y. Deng, R. Duan and J. Yang et al., Van der Waals encapsulation by ultrathin oxide for air-sensitive 2D materials, Adv. Mater. 36 (2024) 2403494.

[33] J. Zhang, Z. Wang, Y. Xing, X. Luo, Z. Wang and G. Wang et al., Enhanced magnetic and electrical properties of Co-doped Fe5GeTe2, Appl. Phys. Lett. 124 (2024) 103103.

[34] L. Liu, S. Chen, Z. Lin and X. Zhang, A symmetry-breaking phase in two-dimensional FeTe2 with ferromagnetism above room temperature, J. Phys. Chem. Lett. 11 (2020) 7893.

[35] P. Hu, T. Chang, W.-J. Chen, J. Deng, S.-L. Li and Y.-G. Zuo et al., Temperature effects on magnetic properties of Fe3O4 nanoparticles synthesized by the sol-gel explosion-assisted method, J. All

Downloads

Published

11-09-2025

How to Cite

[1]
T.-L. Phan, “Fabrication, and structural instability of a van-der-Waals Fe\(_5\)GeTe\(_2\) ferromagnet”, Comm. Phys., vol. 35, no. 3, p. 225, Sep. 2025.

Issue

Section

Papers

Funding data