Fabrication, and structural instability of a van-der-Waals Fe\(_5\)GeTe\(_2\) ferromagnet
Author affiliations
DOI:
https://doi.org/10.15625/0868-3166/22759Abstract
This work presents the solid-state reaction method used to fabricate a polycrystalline Fe5GeTe2 (FGT) sample, in which chemical reactions of precursors took place at 1000 oC in a sealed evacuated quartz ampoule. X-ray diffraction analyses indicate the monophase in the rhombohedral Rm structure of the as-prepared FGT. Unlike ZnO and spinel ferrites, FGT is unstable and easy to decompose to constitute Fe-, Te- and Ge-related secondary materials by high-energy ball milling for a short time. Furthermore, the storage of FGT under normal atmospheric conditions for a period also leads to its decomposition. Such decompositions would directly influence the magnetic behaviors of FGT. This would limit its application potential in next-generation electronic and spintronic devices.
Downloads
References
[1] S. Wang, X. Liu and P. Zhou, The road for 2D semiconductors in the silicon age, Adv. Mater. 34 (2022) 2106886.
[2] A. Hirohata, K. Yamada, Y. Nakatani, I.-L. Prejbeanu, B. Diény and P. Pirro et al., Review on spintronics: Principles and device applications, J. Magn. Magn. Mater. 509 (2020) 166711.
[3] S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. von Molnár and M. L. Roukes et al., Spintronics: A spin-based electronics vision for the future, Science 294 (2001) 1488.
[4] I. Žutić, J. Fabian and S. Das Sarma, Spintronics: Fundamentals and applications, Rev. Mod. Phys. 76 (2004) 323.
[5] A. K. Geim and K. S. Novoselov, The rise of graphene, Nat. Mater. 6 (2007) 183.
[6] P. Huang, P. Zhang, S. Xu, H. Wang, X. Zhang and H. Zhang, Recent advances in two-dimensional ferromagnetism: materials synthesis, physical properties and device applications, Nanoscale 12 (2020) 2309.
[7] D. Joksas, A. AlMutairi, O. Lee, M. Cubukcu, A. Lombardo and H. Kurebayashi et al., Memristive, Spintronic, and 2D-materials-based devices to improve and complement computing hardware, Adv. Intell. Syst. 4 (2022) 2200068.
[8] M. C. Lemme, D. Akinwande, C. Huyghebaert and C. Stampfer, 2D materials for future heterogeneous electronics, Nat. Commun. 13 (2022) 1392.
[9] R. Ramesh, Materials for a sustainable microelectronics future: Electric field control of magnetism with multiferroics, J. Indian Inst. Sci. 102 (2022) 489.
[10] S. Ning, H. Liu, J. Wu and F. Luo, Challenges and opportunities for spintronics based on spin orbit torque, Fundam. Res. 2 (2022) 535.
[11] M. Schmitt, T. Denneulin, A. Kovács, T. G. Saunderson, P. Rüßmann and A. Shahee et al., Skyrmionic spin structures in layered Fe5GeTe2 up to room temperature, Commun. Phys. 5 (2022) 254.
[12] K. Kim, J. Seo, E. Lee, K.-T. Ko, B. S. Kim and B. G. Jang et al., Large anomalous Hall current induced by topological nodal lines in a ferromagnetic van der Waals semimetal, Nat. Mater. 17 (2018) 794.
[13] Q. Liu, J. Xing, Z. Jiang, Y. Guo, X. Jiang and Y. Qi et al., Layer-dependent magnetic phase diagram in FenGeTe2 (3 ≤ n ≤ 7) ultrathin films, Commun. Phys. 5 (2022) 140.
[14] S. Albarakati, C. Tan, Z.-J. Chen, J. G. Partridge, G. Zheng and L. Farrar et al., Antisymmetric magnetoresistance in van der Waals Fe3GeTe2/graphite/Fe3GeTe2 trilayer heterostructures, Sci. Adv. 5 (2019) eaaw0409.
[15] S. Ershadrad, S. Ghosh, D. Wang, Y. Kvashnin and B. Sanyal, Unusual magnetic features in two-dimensional Fe5GeTe2 induced by structural reconstructions, J. Phys. Chem. Lett. 13 (2022) 4877.
[16] A. F. May, D. Ovchinnikov, Q. Zheng, R. Hermann, S. Calder and B. Huang et al., Ferromagnetism near room temperature in the cleavable van der Waals crystal Fe5GeTe2, ACS Nano 13 (2019) 4436.
[17] Y. Guo, Y. Zhao, S. Zhou and J. Zhao, Oxidation behavior of layered FenGeTe2 (n = 3, 4, 5) and Cr2Ge2Te6 governed by interlayer coupling, Nanoscale 14 (2022) 11452.
[18] W. Xie, J. Zhang, Y. Bai, Y. Liu, H. Wang and P. Yu et al., Air stability and composition evolution in van der Waals Fe3GeTe2, APL Mater. 12 (2024) 031102.
[19] D. S. Kim, J. Y. Kee, J.-E. Lee, Y. Liu, Y. Kim and N. Kim et al., Surface oxidation in a van der Waals ferromagnet Fe3-xGeTe2, Curr. Appl. Phys. 30 (2021) 40.
[20] T. Hu, Y. Ma, L. Lu, Y. Deng, M. Wang and K. Zhu et al., Enhanced magnetic transition temperature through ferromagnetic and antiferromagnetic interaction in cobalt-substituted Fe5GeTe2, Appl. Phys. Lett. 125 (2024) 022403.
[21] A. F. May, C. A. Bridges and M. A. McGuire, Physical properties and thermal stability of Fe5-xGeTe2 single crystals, Phys. Rev. Mater. 3 (2019) 104401.
[22] H. Wu, L. Chen, P. Malinowski, B. G. Jang, Q. Deng and K. Scott et al., Reversible non-volatile electronic switching in a near-room-temperature van der Waals ferromagnet, Nat. Commun. 15 (2024) 2739.
[23] M. Joe, U. Yang and C. Lee, First-principles study of ferromagnetic metal Fe5GeTe2, Nano Mater. Sci. 1 (2019) 299.
[24] E. Nshimyimana, X. Su, H. Xie, W. Liu, R. Deng and T. Luo et al., Realization of non-equilibrium process for high thermoelectric performance Sb-doped GeTe, Sci. Bull. 63 (2018) 717.
[25] S. Kim, S. Y. Park, J. Jeong, G.-H. Kim, P. Rohani and D. S. Kim et al., Production of pristine, sulfur-coated and silicon-alloyed germanium nanoparticles via laser pyrolysis, Nanotechnology 26 (2015) 305703.
[26] A. Liu, X. Chen, Z. Zhang, Y. Jiang and C. Shi, Selective synthesis and magnetic properties of FeSe2 and FeTe2 nanocrystallites obtained through a hydrothermal co-reduction route, Solid State Commun. 138 (2006) 538.
[27] P. D. Lodhi, N. Kaurav, K. K. Choudhary and Y. K. Kuo, Temperature-dependent transport properties of a FeTe compound, Bull. Mater. Sci. 42 (2019) 269.
[28] D. H. Manh, T. D. Thanh, T. L. Phan and D. S. Yang, Towards hard-magnetic behavior of CoFe2O4 nanoparticles: a detailed study of crystalline and electronic structures, and magnetic properties, RSC Adv. 13 (2023) 8163.
[29] T.-L. Phan, Y. D. Zhang, D. S. Yang, N. X. Nghia, T. D. Thanh and S. C. Yu, Defect-induced ferromagnetism in ZnO nanoparticles prepared by mechanical milling, Appl. Phys. Lett. 102 (2013) 072408.
[30] G. Y. Khadzhai, A. L. Solovjov, M. V. Kislitsa, L. A. Paschenko, E. Nazarova and K. Buchkov et al., The effect of long-term exposure at room temperature on the thermal conductivity of the FeSe superconductor in the normal state, Low Temp. Phys. 49 (2023) 404.
[31] C. Liu, B. A. Davidson, M. Zonno, S. Zhdanovich, R. Roemer and M. Michiardi et al., Protection of air-sensitive two-dimensional van der Waals thin film materials by capping and decapping process, Synchrotron Radiat. News 36 (2023) 24.
[32] K. Yi, Y. Wu, L. An, Y. Deng, R. Duan and J. Yang et al., Van der Waals encapsulation by ultrathin oxide for air-sensitive 2D materials, Adv. Mater. 36 (2024) 2403494.
[33] J. Zhang, Z. Wang, Y. Xing, X. Luo, Z. Wang and G. Wang et al., Enhanced magnetic and electrical properties of Co-doped Fe5GeTe2, Appl. Phys. Lett. 124 (2024) 103103.
[34] L. Liu, S. Chen, Z. Lin and X. Zhang, A symmetry-breaking phase in two-dimensional FeTe2 with ferromagnetism above room temperature, J. Phys. Chem. Lett. 11 (2020) 7893.
[35] P. Hu, T. Chang, W.-J. Chen, J. Deng, S.-L. Li and Y.-G. Zuo et al., Temperature effects on magnetic properties of Fe3O4 nanoparticles synthesized by the sol-gel explosion-assisted method, J. All
Downloads
Published
How to Cite
Issue
Section
License
Communications in Physics is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Copyright on any research article published in Communications in Physics is retained by the respective author(s), without restrictions. Authors grant VAST Journals System (VJS) a license to publish the article and identify itself as the original publisher. Upon author(s) by giving permission to Communications in Physics either via Communications in Physics portal or other channel to publish their research work in Communications in Physics agrees to all the terms and conditions of https://creativecommons.org/licenses/by-sa/4.0/ License and terms & condition set by VJS.
Funding data
-
National Foundation for Science and Technology Development
Grant numbers 103.02-2023.61


