Application of the \(R\)-matrix method to determine the \((p,\gamma)\) cross-section

Author affiliations

Authors

  • Nguyen Hoang Phuc \(^1\)Department of Applied Physics, Faculty of Applied Science, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, Dien Hong Ward, Ho Chi Minh City, Vietnam;<br> \(^2\)Vietnam National University Ho Chi Minh City, Linh Xuan Ward, Ho Chi Minh City, Vietnam https://orcid.org/0009-0008-3766-7788

DOI:

https://doi.org/10.15625/0868-3166/22929

Keywords:

($p,\gamma$) reaction, calculable $R$-matrix, local potential, nonlocal potential

Abstract

We apply the calculable \(R\)-matrix method to determine the \(p,\Gamma\) cross section. We compare our cross-section calculation for the benchmark \(^{12}\)C\((p,\gamma)^{13}\)N reaction with results from the widely used FRESCO and RADCAP codes, which use the conventional Numerov method. Our calculations are in good agreement with these codes. Furthermore, we extend the calculable \(R\)-matrix method to accommodate non-local potentials.

Downloads

Download data is not yet available.

References

[1] C. R. Brune1 and B. Davids, Annu. Rev. Nucl. Part. Sci. 65 (2015) 87.

[2] C. E. Rolfs and W. S. Rodney, Cauldrons in the cosmos: Nuclear astrophysics, Chicago Press, Chicago, 1988.

[3] C. Bertulani and T. Kajino, Progress in Particle and Nuclear Physics 89 (2016) 56.

[4] P. Descouvemont, Front. Astron. Space Sci. 7 (2020) 9.

[5] P. Descouvemont and D. Baye, Reports on Progress in Physics 73 (2010) 036301.

[6] R. E. Azuma, E. Uberseder, E. C. Simpson, C. R. Brune, H. Costantini, R. J. de Boer, J. Görres, M. Heil, P. J.

LeBlanc, C. Ugalde and M. Wiescher, Phys. Rev. C 81 (2010) 045805.

[7] J. Huang, C. Bertulani and V. Guimarães, Atomic Data and Nuclear Data Tables 96 (2010) 824.

[8] Y. Xu, K. Takahashi, S. Goriely, M. Arnould, M. Ohta and H. Utsunomiya, Nuclear Physics A 918 (2013) 61.

[9] I. J. Thompson, Computer Physics Reports 7 (1988) 167.

[10] C. Bertulani, Computer Physics Communications 156 (2003) 123.

[11] T. Simos, Applied Numerical Mathematics 7 (1991) 201.

[12] P. Descouvemont, Computer Physics Communications 200 (2016) 199.

[13] D. Baye, Physics Reports 565 (2015) 1, The Lagrange-mesh method.

[14] N. H. Phuc, N. T. T. Phuc and D. C. Cuong, International Journal of Modern Physics E 30 (2021) 2150079.

[15] P. Fraser, K. Amos, S. Karataglidis, L. Canton, G. Pisent and J. P. Svenne, The European Physical Journal A 35

(2008) 69.

[16] Y. Tian, D. Y. Pang and Z.-y. Ma, Phys. Rev. C 97 (2018) 064615.

[17] N. L. Anh, N. H. Phuc, D. T. Khoa, L. H. Chien and N. T. T. Phuc, Nuclear Physics A 1006 (2021) 122078.

[18] F. Perey and B. Buck, Nuclear Physics 32 (1962) 353.

[19] M. Abramowitz and I. A. Stegun, Handbook of mathematical functions with formulas, graphs, and mathematical

tables, vol. 55, Tenth Printing, US Government printing office, 1972.

[20] B. C, Nucl. Phys. 4 (1957) 503.

[21] B. Robson, Nuclear Physics A 132 (1969) 5.

[22] H. A. Bethe, Phys. Rev. 55 (1939) 434.

[23] N. Burtebaev, S. B. Igamov, R. J. Peterson, R. Yarmukhamedov and D. M. Zazulin, Phys. Rev. C 78 (2008)

035802.

[24] J. L. Vogl, Radiative capture of protons by 12 c and 13 c below 700 kev, PhD thesis, California Institute of

Technology, 1963.

[25] C. Rolfs and R. Azuma, Nuclear Physics A 227 (1974) 291.

Published

17-10-2025

How to Cite

[1]
H. P. Nguyen, “Application of the \(R\)-matrix method to determine the \((p,\gamma)\) cross-section”, Comm. Phys., vol. 35, no. 4, Oct. 2025.

Most read articles by the same author(s)

Similar Articles

<< < 3 4 5 6 7 8 9 10 11 12 > >> 

You may also start an advanced similarity search for this article.