On Rydberg excitons in two-dimensional semiconductors
Author affiliations
DOI:
https://doi.org/10.15625/0868-3166/23107Abstract
We study Rydberg excitons in two-dimensional transition-metal dichalcogenide semiconductors, using the Rytova-Keldysh potential to account for nonlocal dielectric screening effects. We determine exciton binding energies in monolayer WSe\(_2\) and WS\(_2\) by the variational method. We perform calculations for different dielectric environments (isolation, hBN encapsulation, and SiO\(_2\) substrate support) to investigate the influences of the surrounding dielectric environment. Our theoretical results agree reasonably with experimental measurements and previous numerical calculations. The study shows a strong dependence of exciton binding energy and spatial extent on both the principal and angular quantum numbers, as well as on the surrounding dielectric environment.
Downloads
References
[1] B. W. H. Baugher, H. O. H. Churchill, Y. Yang and P. Jarillo-Herrero, Optoelectronic devices based on electrically tunable p–n diodes in a monolayer dichalcogenide, Nat. Nanotechnol. 9 (2014) 262.
[2] A. Pospischil, M. M. Furchi and T. Mueller, Solar-energy conversion and light emission in an atomic monolayer p–n diode, Nat. Nanotechnol. 9 (2014) 257.
[3] J. S. Ross, P. Klement, A. M. Jones, N. J. Ghimire, J. Yan, D. G. Mandrus et al., Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p–n junctions, Nat. Nanotechnol. 9 (2014) 268.
[4] H. Wang, C. Zhang, W. Chan, S. Tiwari and F. Rana, Ultrafast response of monolayer molybdenum disulfide photodetectors, Nat. Commun. 6 (2015) 8831.
[5] S. Wu, S. Buckley, J. R. Schaibley, L. Feng, J. Yan, D. G. Mandrus, F. Hatami et al., Monolayer semiconductor nanocavity lasers with ultralow thresholds, Nature 520 (2015) 69.
[6] Y. Ye, Z. J. Wong, X. Lu, X. Ni, H. Zhu, X. Chen et al., Monolayer excitonic laser, Nat. Photonics 9 (2015) 733.
[7] D. Y. Qiu, F. H. da Jornada and S. G. Louie, Optical Spectrum of MoS2: Many-Body Effects and Diversity of Exciton States, Phys. Rev. Lett. 111 (2013) 216805.
[8] K. He, N. Kumar, L. Zhao, Z. Wang, K. F. Mak, H. Zhao et al., Tightly bound excitons in monolayer WSe2, Phys. Rev. Lett. 113 (2014) 026803.
[9] M. M. Ugeda, A. J. Bradley, S.-F. Shi, F. H. da Jornada, Y. Zhang, D. Y. Qiu et al., Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor, Nat. Mater. 13 (2014) 1091.
[10] T. Wang, Z. Li, Y. Li, Z. Lu, S. Miao, Z. Lian et al., Giant Valley-Polarized Rydberg Excitons in Monolayer WSe2 Revealed by Magneto-photocurrent Spectroscopy, Nano Lett. 20 (2020) 7635.
[11] A. Popert, Y. Shimazaki, M. Kroner, K. Watanabe, T. Taniguchi, A. Imamoğlu et al., Optical sensing of fractional quantum hall effect in graphene, Nano Lett. 22 (2022) 7363.
[12] Q. Hu et al., Observation of Rydberg moiré excitons, Science 380 (2023) 1367.
[13] Z. Lian, Y.-M. Li, L. Yan, L. Ma, D. Chen, T. Taniguchi et al., Stark effects of Rydberg excitons in a monolayer WSe2 P–N Junction, Nano Lett. 24 (2024) 4843.
[14] T. C. Berkelbach, M. S. Hybertsen and D. R. Reichman, Theory of neutral and charged excitons in monolayer transition metal dichalcogenides, Phys. Rev. B 88 (2013) 045318.
[15] C. Zhang, H. Wang, W. Chan, C. Manolatou and F. Rana, Absorption of light by excitons and trions in monolayers of metal dichalcogenide MoS2: Experiments and theory, Phys. Rev. B 89 (2014) 205436.
[16] Y. You, X.-X. Zhang, T. C. Berkelbach, M. S. Hybertsen, D. R. Reichman and T. F. Heinz, Observation of biexcitons in monolayer WSe2, Nat. Phys. 11 (2015) 477.
[17] E. Courtade, M. Semina, M. Manca, M. M. Glazov, C. Robert, F. Cadiz et al., Charged excitons in monolayer WSe2: Experiment and theory, Phys. Rev. B 96 (2017) 085302.
[18] M. Van der Donck, M. Zarenia and F. M. Peeters, Excitons, trions, and biexcitons in transition-metal dichalcogenides: Magnetic-field dependence, Phys. Rev. B 97 (2018) 195408.
[19] R. P. A. Emmanuele, M. Sich, O. Kyriienko, V. Shahnazaryan, F. Withers, A. Catanzaro et al., Highly nonlinear trion-polaritons in a monolayer semiconductor, Nat. Commun. 11 (2020) 3589.
[20] H. N. Cam, N. T. Phuc and V. A. Osipov, Symmetry-dependent exciton-exciton interaction and intervalley biexciton in monolayer transition metal dichalcogenides, npj 2D Mater. Appl. 6 (2022) 22.
[21] I. L. C. Lima, M. V. Milošević, F. M. Peeters and A. Chaves, Tuning of exciton type by environmental screening, Phys. Rev. B 108 (2023) 115303.
[22] A. Castellanos-Gomez, L. Vicarelli, E. Prada, J. O. Island, K. L. Narasimha-Acharya, S. I. Blanter et al., Isolation and characterization of few-layer black phosphorus, 2D Mater. 1 (2014) 25001.
[23] E. Prada, J. V. Alvarez, K. L. Narasimha-Acharya, F. J. Bailen and J. J. Palacios, Effective-mass theory for the anisotropic exciton in two-dimensional crystals: Application to phosphorene, Phys. Rev. B 91 (2015) 245421.
[24] L. Xu, M. Yang, S. J. Wang and Y. P. Feng, Electronic and optical properties of the monolayer group-IV monochalcogenides MX (M=Ge, Sn; X=S, Se, Te), Phys. Rev. B 95 (2017) 235434.
[25] J. N. S. Gomes, C. Trallero-Giner and M. I. Vasilevskiy, Variational calculation of the lowest exciton states in phosphorene and transition metal dichalcogenides, J. Phys. Condens. Matter 34 (2022) 45702.
[26] N. S. Rytova, The screened potential of a point charge in a thin film, Moscow Univ. Phys. Bull. 22 (1967) 18.
[27] L. V. Keldysh, Coulomb interaction in thin semiconductor and semimetal films, J. Exp. Theor. Phys. Lett. 29 (1979) 658.
[28] T. Olsen, S. Latini, F. Rasmussen and K. S. Thygesen, Simple Screened Hydrogen Model of Excitons in Two-Dimensional Materials, Phys. Rev. Lett. 116 (2016) 056401.
[29] M. R. Molas, A. O. Slobodeniuk, K. Nogajewski, M. Bartos, Ł. Bala, A. Babiński et al., Energy spectrum of two-dimensional excitons in a nonuniform dielectric medium, Phys. Rev. Lett. 123 (2019) 136801.
[30] A. C. Riis-Jensen, M. N. Gjerding, S. Russo and K. S. Thygesen, Anomalous exciton Rydberg series in two-dimensional semiconductors on high-κ dielectric substrates, Phys. Rev. B 102 (2020) 201402.
[31] H. T. Nguyen-Truong, Exciton binding energy and screening length in two-dimensional semiconductors, Phys. Rev. B 105 (2022) L201407.
[32] H. T. Dinh, N.-H. Phan, D.-N. Ly, D.-N. Le, N.-T. D. Hoang, N.-Q. Nguyen et al., Analytical expression for exciton energies in monolayer transition metal dichalcogenides, Phys. Rev. B 111 (2025) 035443.
[33] M. Shinada and S. Sugano, Interband Optical Transitions in Extremely Anisotropic Semiconductors. I. Bound and Unbound Exciton Absorption, J. Phys. Soc. Japan 21 (1966) 1936.
[34] W. Edelstein, H. N. Spector and R. Marasas, Two-dimensional excitons in magnetic fields, Phys. Rev. B 39 (1989) 7697.
[35] X. L. Yang, S. H. Guo, F. T. Chan, K. W. Wong and W. Y. Ching, Analytic solution of a two-dimensional hydrogen atom. I. Nonrelativistic theory, Phys. Rev. A 43 (1991) 1186.
[36] D. G. W. Parfitt and M. E. Portnoi, The two-dimensional hydrogen atom revisited, J. Math. Phys. 43 (2002) 4681.
[37] H. Haug and S. W. Koch, Quantum Theory of the Optical and Electronic Properties of Semiconductors. World Scientific, Singapore, 2004.
[38] A. V. Stier, N. P. Wilson, K. A. Velizhanin, J. Kono, X. Xu and S. A. Crooker, Magnetooptics of Exciton Rydberg States in a Monolayer Semiconductor, Phys. Rev. Lett. 120 (2018) 057405.
[39] K. F. Mak, D. Xiao and J. Shan, Light–valley interactions in 2D semiconductors, Nat. Photonics 12 (2018) 451.
[40] K. F. Mak, K. He, J. Shan and T. F. Heinz, Control of valley polarization in monolayer MoS2 by optical helicity, Nat. Nanotechnol. 7 (2012) 494.
[41] J. R. Schaibley, H. Yu, G. Clark, P. Rivera, J. S. Ross, K. L. Seyler et al., Valleytronics in 2D materials, Nat. Rev. Mater. 1 (2016) 16055.
[42] Y. J. Zhang, T. Oka, R. Suzuki, J. T. Ye and Y. Iwasa, Electrically Switchable Chiral Light-Emitting Transistor, Science 344 (2014) 725.
[43] A. Chernikov, T. C. Berkelbach, H. M. Hill, A. Rigosi, Y. Li, B. Aslan et al., Exciton Binding Energy and Nonhydrogenic Rydberg Series in Monolayer WS2, Phys. Rev. Lett. 113 (2014) 076802.
[44] T. Handa, M. Holbrook, N. Olsen, L. N. Holtzman, L. Huber, H. I. Wang et al., Spontaneous exciton dissociation in transition metal dichalcogenide monolayers, Sci. Adv. 10 (2024) eadj4060.
[45] M. Goryca, J. Li, A. V. Stier, T. Taniguchi, K. Watanabe, E. Courtade, S. Shree et al., Revealing exciton masses and dielectric properties of monolayer semiconductors with high magnetic fields, Nat. Commun. 10 (2019) 4172.
[46] J. Zipfel, J. Holler, A. A. Mitioglu, M. V. Ballottin, P. Nagler, A. V. Stier et al., Spatial extent of the excited exciton states in WS2 monolayers from diamagnetic shifts, Phys. Rev. B 98 (2018) 075438.
[47] D.-N. Ly, D.-N. Le, D.-A. P. Nguyen, N.-T. D. Hoang, N.-H. Phan, H.-M. L. Nguyen et al., Retrieval of material properties of monolayer transition metal dichalcogenides from magnetoexciton energy spectra, Phys. Rev. B 107 (2023) 205304.
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Communications in Physics

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Communications in Physics is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Copyright on any research article published in Communications in Physics is retained by the respective author(s), without restrictions. Authors grant VAST Journals System (VJS) a license to publish the article and identify itself as the original publisher. Upon author(s) by giving permission to Communications in Physics either via Communications in Physics portal or other channel to publish their research work in Communications in Physics agrees to all the terms and conditions of https://creativecommons.org/licenses/by-sa/4.0/ License and terms & condition set by VJS.
Funding data
-
National Foundation for Science and Technology Development
Grant numbers 103.01-2023.114


