Control power in controlled hybrid teleportation between a discrete-variable state and a continuous-variable state under decoherence effects

Author affiliations

Authors

  • Cao Thi Bich Institute of Physics, Vietnam Academy of Science and Technology, 10 Dao Tan, Giang Vo, Hanoi 11108, Vietnam https://orcid.org/0000-0002-1663-779X

DOI:

https://doi.org/10.15625/0868-3166/23303

Abstract

One of our works, [C. T. Bich and N. B. An, Pramana – Journal of Physics 96 (2022) 33], proposed a linear optics scheme for teleporting two different types of qubits. This was achieved by using a four-particle hybrid entangled state and controlled by two controllers operating in two distinct types of Hilbert spaces: a finite-dimensional space and an infinite-dimensional space. In this work, the power of the two controllers is assessed through the analysis of the average fidelity of the teleportation protocol in their absence. It is worth noting that the controller holding a discrete-variable state consistently exhibits power that is equal to or greater than that of the controller holding a continuous-variable state.

Downloads

Download data is not yet available.

References

[1] E. Schrodinger, ”Die gegenw ¨ artige Situation in der Quantenmechanik,” ¨ Naturwissenschaften, vol. 23, pp. 807,

1935.

[2] A. K. Pati, P. Parashar, and P. Agrawal, Quantum superdense coding with GHZ-class states, Phys. Rev. A, 72

(2005) 012329.

[3] C. H. Bennett and G. Brassard, Quantum cryptography: Public key distribution and coin tossing, in Proceedings

of IEEE International Conference on Computers, Systems, and Signal Processing, Bangalore, India, (1984) pp.

175-179.

[4] M. Hillery, V. Buzek, and A. Berthiaume, ˇ Quantum secret sharing, Phys. Rev. A, 53 (1999) 1829.

[5] C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, ´ Teleporting an unknown quantum

state via dual classical and Einstein-Podolsky-Rosen channels, Phys. Rev. Lett., 70 (1993) 1895.

[6] N. B. An, Controlled quantum teleportation in noisy environments, Phys. Rev. A, 68 (2003) 022321.

[7] J. Lee, H. Min, and S. D. Oh, Quantum teleportation with partially entangled resources, Phys. Rev. A, 66 (2002)

052318.

[8] M. Ikram, S. Y. Zhu, and M. S. Zubairy, Teleportation of entangled coherent states, Phys. Rev. A, 62 (2000)

022307.

[9] G. Rigolin, Teleportation of entangled states and quantum information splitting, Phys. Rev. A, 71 (2005) 032303.

[10] X. S. Ma et al., Quantum teleportation over 143 kilometers using active feed-forward, Nature, 489 (2012) 269.

[11] M. A. Nilson, E. Knill, and R. Laflamme, Quantum computing with small errors, Nature, 396 (1998) 52.

[12] D. Bouwmeester et al., Experimental quantum teleportation, Nature, 390 (1997) 575.

[13] A. Einstein, B. Podolsky, and N. Rosen, Can quantum-mechanical description of physical reality be considered

complete?, Phys. Rev., 47 (1935) 777.

[14] D. M. Greenberger, M. A. Horne, and A. Zeilinger, Going beyond Bell’s theorem, in Bell’s Theorem, Quantum

Theory and Conceptions of the Universe, Kluwer, Dordrecht, 1989.

[15] W. Dur, G. Vidal, and J. I. Cirac, ¨ Three qubits can be entangled in two inequivalent ways, Phys. Rev. A, 62 (2000)

062314.

[16] H. J. Briegel and R. Raussendorf, Persistent entanglement in arrays of interacting particles, Phys. Rev. Lett., 86

(2001) 910.

[17] A. Karlsson and M. Bourennane, Quantum teleportation using three-particle entanglement, Phys. Rev. A, 58

(1998) 4394.

[18] F. G. Deng et al., Quantum secure direct communication with a GHZ state, Phys. Rev. A, 72 (2005) 022338.

[19] C. P. Yang, S. I. Chu, and S. Han, Quantum teleportation in Josephson-junction systems, Phys. Rev. A, 70 (2004)

022329.

[20] A. Kumar et al., Controlled teleportation in noisy environments, Phys. Rev. A, 87 (2013) 022307.

[21] T. Gao, F. L. Yan, and Y. C. Li, Controllable quantum teleportation, Europhys. Lett., 84 (2008) 50001.

[22] P. Zhou, X. H. Li, and F. G. Deng, Quantum teleportation with a mixed state, J. Phys. A: Math. Theor., 40 (2007)

13121.

[23] P. Kok et al., Linear optical quantum computing with photonic qubits, Rev. Mod. Phys., 79 (2007) 135.

[24] E. Knill, L. Laflamme, and G. J. Milburn, A scheme for efficient quantum computation with linear optics, Nature,

409 (2001) 46.

[25] A. Furusawa et al., Unconditional quantum teleportation, Science, 282 (1998) 706.

[26] P. van Loock and S. L. Braunstein, Multipartite entanglement for continuous variables: a quantum teleportation

network, Phys. Rev. Lett., 84 (2000) 3482.

[27] X. Wang, Entanglement in the quantum Heisenberg XY model, Phys. Rev. A, 64 (2001) 022302.

[28] S. J. van Enk and O. Hirota, Entangled coherent states: Teleportation and decoherence, Phys. Rev. A, 64 (2001)

022313.

[29] P. van Loock et al., Hybrid quantum repeater using bright coherent light, Phys. Rev. Lett., 96 (2006) 240501.

[30] P. van Loock, Hybrid quantum information processing, Laser Photonics Rev., 5 (2011) 167.

[31] A. Ourjoumtsev, A. Dantan, R. Tualle-Brouri, P. Grangier, Increasing entanglement between Gaussian states by

coherent photon subtraction, Phys. Rev. Lett., 98 (2007) 030502.

[32] A. Guccione, A. Zavatta, M. Bellini, H. Jeong, Connecting heterogeneous quantum networks by hybrid entanglement swapping, Sci. Adv., 22 (2020) eaba4508.

[33] S. Takeda and A. Furusawa, Optical Hybrid Quantum Information Processing, in: Quantum Teleportation and

Entanglement: A Hybrid Approach to Optical Quantum Information Processing (Springer, 2014), Chap. 20.

[34] F. Dell’Anno, S. De Siena, F. Illuminati, Non-Gaussian quantum states in continuous variable quantum information, Phys. Rep., 428 (2006) 53.

[35] Z.-B. Chen, J.-W. Pan, G. Hou, Y.-D. Zhang, Maximal entanglement between a pair of atomic ensembles by

optical selection rules, Phys. Rev. Lett., 88 (2002) 040406.

[36] H. Jeong, A. Zavatta, M. Kang, S.-W. Lee, L. S. Costanzo, S. Grandi, T. C. Ralph, M. Bellini, Generation of

hybrid entanglement of light, Nat. Photonics, 8 (2014) 564.

[37] S.-W. Lee, H. Jeong, Near-deterministic quantum teleportation and resource-efficient quantum computation using

linear optics and hybrid qubits, Phys. Rev. A, 87 (2013) 022326.

[38] M. He, S. Hu, W. Wang, Q. Liao, Enhancing quantum teleportation using hybrid entangled states and nonGaussian operations, Sci. Rep., 12 (2022) 17288.

[39] C. T. Bich and N. B. An, Teleporting DV qubit to CV qubit and vice versa via DV-CV hybrid entanglement across

lossy environment supervised simultaneously by both DV and CV controllerss, Pramana – Journal of Physics 96

(2022) 33.

[40] S. Massar and S. Popescu, Optimal Extraction of Information from Finite Quantum Ensembles, Phys. Rev. Lett.

74 (1995) 1259.

Published

17-10-2025

How to Cite

[1]
B. Cao Thi, “Control power in controlled hybrid teleportation between a discrete-variable state and a continuous-variable state under decoherence effects”, Comm. Phys., vol. 35, no. 4, Oct. 2025.

Funding data