Study on Optical Properties and Energy Transfer of Dy3+ Ions in ZnS Semiconductor Nanocrystals
Author affiliations
DOI:
https://doi.org/10.15625/0868-3166/23365Abstract
In this study, Dy³⁺-doped ZnS nanocrystals (NCs) with concentrations varying from 0.5-3% were successfully synthesized by the wet chemical method in a pure Ar atmosphere. XRD and EDX results showed that the material crystallized in a stable cubic phase, with nanometer size, and determined the presence of elements in the sample. FTIR spectra recorded characteristic vibrational bands of Zn–S bonds and surface organic functional groups, confirming the formation of ZnS host and a stable organic coating surrounding the nanoparticles. UV-Vis absorption spectra confirmed the distinct quantum confinement effect compared to bulk ZnS. Photoluminescence (PL) spectra of the sample showed characteristic emission lines of Dy³⁺, in which the gold peak at ~580 nm was dominant. The CIE color coordinate and correlated color temperature (CCT) analysis results showed the ability to tune the color from cool blue light of pure ZnS to warm white light when doped with Dy³⁺. The fluorescence quenching that occurred at Dy concentrations above 2% and the decrease in fluorescence lifetime with increasing Dy concentrations were explained through cross-relaxation energy transfer processes in Dy³⁺ ions. These characteristics demonstrate that ZnS:Dy³⁺ NCs are promising luminescent materials for white light LEDs and advanced optoelectronic applications.
Downloads
References
[1] N. X. Ca, N. D. Vinh, S. Bharti, P. M. Tan, N. T. Hien, V. X. Hoa, Y. Peng, P. V. Do, Optical properties of Ce3+ and Tb3+ co-doped ZnS quantum dots, J. Alloys Compd, 883 (2021) 160764.
[2] S. S. Khan, J. P. Steffy, L. Sruthi, A. Syed, A. M. Elgorban, I. Abid, L. S. Wong, Construction of ZnS QDs decorated gC3N4 nanosheets for enhanced catalytic degradation of Rhodamine B, Ceram. Int, 50 (2024) 36479-36486.
[3] D. B. Bora, S. Das, A. Phukan, S. Kalita, P. P. Handique, R. Borah, Brønsted-Lewis acidic ionic liquid-derived ZnS quantum dots: synthesis, characterization, and multifunctional applications in pollutant degradation and iodine sorption, Nanoscale, 17 (2025) 10718-10731.
[4] R. Pradheepa, I. Manimehan, P. Sakthivel, Structural, bandgap tailoring, photoluminescence and electrochemical characteristics of Sm3+-doped ZnS quantum dots prepared in Ar-atmosphere, Mater. Sci. Eng. B, 306 (2024) 117463.
[5] M. Haque, I. Konthoujam, S. Lyndem, S. Koley, K. Aguan, A. S. Roy, Formation of ZnS quantum dots using green tea extract: applications to protein binding, bio-sensing, anti-bacterial and cell cytotoxicity studies, J. Mater. Chem. B 11 (2023) 1998-2015.
[6] S. Murugan, M. Ashokkumar, P. Sakthivel, Dongjin Choi, Sulfur deficiency mediated visible emission of ZnS QDs by magnesium dopant and their application in waste water treatment, Heliyon, 9 (2023) 17947.
[7] N. T. Hien, Y. Y. Yu, K. C. Park, N. X. Ca, T. T. K. Chi, B. T. T. Hien, L. D. Thanh, P. V. Do, P. M. Tan, P. T. T. Ha, Influence of Eu doping on the structural and optical properties of Zn1-xEuxSe quantum dots, J. Phys. Chem. Solids, 148 (2021) 109729.
[8] P. M. Tan, T. Ngoc, V. D. Nguyen, N.T. Hien, V. X. Hoa, N. X. Truong, V. T. K. Oanh, N. D. Tam, N.X. Ca, S. Bharti, Y. Peng, Study of optical properties and energy transfer mechanism of Tb3+, Sm3+ singly doped and co-doped ZnS quantum dots, Opt. Mater, 114 (2021) 110901.
[9] N. D. Vinh, P. M. Tan, P. V. Do, S. Bharti, V. X. Hoa, N. T. Hien, N. T. Luyen, N. X. Ca, Effect of dopant concentration and the role of ZnS shell on optical properties of Sm3+ doped CdS quantum dots, RSC Adv, 11 (2021) 7961-7971.
[10] A. Kumawat, S. Chattopadhyay, R. K. Verma, K. P. Misra, Eu doped ZnO nanoparticles with strong potential of thermal sensing and bioimaging, Mater. Lett, 308 (2022) 131221.
[11] D. D. Hile, H. C. Swart, S. V. Motloung, T. E. Motaung, R. E. Kroon, K. O. Egbo, V. B. Pawade, L. F. Koao, Synthesis and characterization of europium doped zinc selenide thin films prepared by photo-assisted chemical bath technique for luminescence application, Mater. Chem. Phys, 262 (2021) 124303.
[12] S. Jindal, P. Sharma, Optical and magnetic properties of Dy3+ doped CdS dilute magnetic semiconductor nanoparticles, Mater. Sci. Semicond. Process, 108 (2020) 104884.
[13] S. Ahmad, First-principles relativistic analysis of Dy-doped CdSe: Electronic band structure, optical properties, and thermoelectric potential for PC-LED applications, Physica B: Condens. Matter, 714 (2025) 417395.
[14] S. Sa, A. Phuruangrat, T. Thongtem, S. Thongtem, Characterization and photocatalysis of visible-light-driven Dy-doped ZnO nanoparticles synthesized by tartaric acid-assisted combustion method, Inorg. Chem. Commun, 117 (2020) 107944.
[15] G. El Fidha, N. Bitri, F. Chaabouni, S. Acosta, F. Güell, C. Bittencourt, J. Casanova-Chafer and E. Llobet, Physical and photocatalytic properties of sprayed Dy doped ZnO thin films under sunlight irradiation for degrading methylene blue, RSC Adv, 11 (2021) 24917-24925.
[16] N. Sharma, P.P. Sahay, Solution combustion synthesis of Dy-doped ZnO nanoparticles: An investigation of their structural, optical and photoluminescence characteristics, J. Lumin, 257 (2023) 119655.
[17] J. Carranza, Luis A. González, José Escorcia-García, Luminescence enhancement of Mn2+-doped ZnS nanoparticles by insertion of Dy3+ ions, Ceram. Int, 51 (2025) 46268-46276.
[18] X. Tian, J. Wen, S. Wang, J. Hu, J. Li, H. Peng, Starch-assisted synthesis and optical properties of ZnS nanoparticles, Mater. Res. Bull, 77 (2016) 279-283.
[19] H. K. Sharma, P. K. Shukla, S. L. Agrawal, Effect of sulphur concentration on the structural and electronic properties of ZnS nanoparticles synthesized using chemical precipitation method, J. Mater. Sci.: Mater. Electron, 28 (2017) 6226-6232.
[20] S. Gouraha, K. B. Masood, S. J. Gilani, A. Rai, H. S. Tewari, J. Singh, Enhanced photoluminescence and photocatalytic properties in Dy-doped sodium zinc molybdate synthesized via a green microwave-assisted method, Nanoscale Adv, 7 (2025) 3038-3048.
[21]R. Mohan, C. Rakkappan, N. Punitha, K. Jayamoorthy, P. Magesan, N. Srinivasan, Investigations on capping-induced changes in structural, optical, and thermal properties of Zn0.96Ni0.04S nanoparticles, Chem. Phys. Impact, 7 (2023) 100260.
[22] P. V. Do, L. D. Thanh, T. T. C. Thuy, N. V. Nghia, N. M. Hung, N. T. M. Thuy, N. T. Hien, N. X. Ca, An in-depth study of the structure, optical properties and energy transfer process of Eu3+-doped CdSe nanocrystals, Ceram. Int, 51 (2025) 6616-6626.
[23] N. T. Hien, N. T. Kien, V. H. Yen, T. Ngoc, P. V. Do, V. X. Phuc and N. X. Ca, Optical properties and Judd–Ofelt analysis of Dy3+ doped CoAl2O4 nanocrystals, Nanoscale Adv, 6 (2024) 5598-5611.
[24] M. Salavati-Niasari, M. Ranjbar,, D. Ghanbari, A rapid microwave route for the synthesis of ZnS nanoparticles, J. Nanostruct, 1 (2012) 231-235.
[25] M. Jothibas, S. Johnson Jeyakumar, C. Manoharan, I. Kartharinal Punithavathy, P. Praveen J. Prince Richard, Structural and optical properties of zinc sulphide nanoparticles synthesized via solid state reaction method, J. Mater. Sci.: Mater. Electron, 28 (2017) 1889-1894.
[26] S. Muthukumaran, M. Ashok Kumar, Structural, FTIR and photoluminescence properties of ZnS:Cu thin films by chemical bath deposition method, Mater. Lett, 93 (2013) 223-225.
[27] R. Gärd, Z. X. Sun, W. Forsling, FT-IR and FT-Raman Studies of Colloidal ZnS: 1. Acidic and Alkaline Sites at the ZnS/Water Interface, J. Colloid Interface Sci, 169 (1995) 393-399.
[28] Anitha, Usha, Jithin, Christy, Varughese, Characterization, Thermal effect on Optical band gap energy and Photoluminescence in wurtzite ZnO:Er Nanocrystallites, Mater. Today Proc, 3 (2016) 145 – 151.
[29] A. M. Ghaleb, A. Q. Ahmed, Structural, electronic, and optical properties of sphalerite ZnS compounds calculated using density functional theory (DFT), Chalcogenide Lett, 19 (2022) 309 – 318.
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Communications in Physics

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Communications in Physics is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Copyright on any research article published in Communications in Physics is retained by the respective author(s), without restrictions. Authors grant VAST Journals System (VJS) a license to publish the article and identify itself as the original publisher. Upon author(s) by giving permission to Communications in Physics either via Communications in Physics portal or other channel to publish their research work in Communications in Physics agrees to all the terms and conditions of https://creativecommons.org/licenses/by-sa/4.0/ License and terms & condition set by VJS.
Funding data
-
National Foundation for Science and Technology Development
Grant numbers 103.02-2021.48


