Optical Properties of Silicon Nanoparticles Prepared by Laser Ablation Method in Various Media
Author affiliations
DOI:
https://doi.org/10.15625/0868-3166/24/3S1/5466Keywords:
silicon nanoparticles, pulsed laser ablation, time-dependent photoluminescence spectraAbstract
Bright photoluminescent silicon nanoparticles were successfully fabricated from porous silicon target in air and n-hexane using 532 nm line of YAG:Nd pulsed laser. The whole procedure was carried out at room temperature, in atmosphere. The morphology and composition of as-synthesized nanoparticles were characterized by SEM and EDS measurements. Their optical properties were investigated. The PL peak position of the as-synthesized Si nanoparticle ablated in air is slightly blue-shifted in comparison with those ablated in n-hexane, while it was almost no change of peak position of Si nanoparticles fabricated from p-Si in hexane and original p-Si wafer target. In contrast to PL intensity quenching of original p-Si sample and particles produced in air, those produced in n-hexane solvent exhibited an enhancement. The presence of dangling bonds or energy transfer from excited Si particles to oxygen molecules on the surface can be the cause of the quenching effect.Downloads
Downloads
Published
How to Cite
Issue
Section
License
Communications in Physics is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Copyright on any research article published in Communications in Physics is retained by the respective author(s), without restrictions. Authors grant VAST Journals System (VJS) a license to publish the article and identify itself as the original publisher. Upon author(s) by giving permission to Communications in Physics either via Communications in Physics portal or other channel to publish their research work in Communications in Physics agrees to all the terms and conditions of https://creativecommons.org/licenses/by-sa/4.0/ License and terms & condition set by VJS.


