Density Functional Based Tight Binding Study on Wurzite ZnS Nanowires
Author affiliations
DOI:
https://doi.org/10.15625/0868-3166/22/4/2663Keywords:
Wurtzite Nanowire, Density functional based tight binding simulationAbstract
We present a semi-abinitio - Density Functional Based Tight Binding (DFTB) study on the atomic and electronic structure of ZnS Nanowire (NW) and examine the dependence of surface stress on nanowire lateral size and shape. The ZnS wurtzite wire size ranges from 10 to 45Å and of various possible shapes - triangular, hexagonal and circular-like. We investigate the role of unsaturated dangling bond state in the region of band gap varying the wire's diameter. We have calculated the surface formation energy and find that it decreases with increasing the wire diameter and a greater stability (lower surface formation energy) comes with hexagonal and circular-like depending on wire's diameter. Other electronics and mechanical properties e.g. density of states (DOS), Young modulus... also are found to depend on the wire's size and shape. Futher the wire passivation by hydrogen has also investigated.
Downloads
Downloads
Published
How to Cite
Issue
Section
License
Communications in Physics is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Copyright on any research article published in Communications in Physics is retained by the respective author(s), without restrictions. Authors grant VAST Journals System (VJS) a license to publish the article and identify itself as the original publisher. Upon author(s) by giving permission to Communications in Physics either via Communications in Physics portal or other channel to publish their research work in Communications in Physics agrees to all the terms and conditions of https://creativecommons.org/licenses/by-sa/4.0/ License and terms & condition set by VJS.


