Electrochemical Performance of \(\text{Na}_{0.44}\text{MnO}_{2}\) Synthesized by Hydrothermal Method Using as a Cathode Material for Sodium Ion Batteries
Author affiliations
DOI:
https://doi.org/10.15625/0868-3166/27/2/9631Keywords:
cathode materials, hydrothermal method, Na0.44MnO2, sodium ion batteryAbstract
Orthorhombic Na0.44MnO2 with an S-shape tunnel structure was successfully synthesized by a hydrothermal method. The Na0.44MnO2 material has lattice parameters of a = 9.0842 Å, b = 26.2889 Å, and c = 2.8245 Å. Scanning electron microscope analysis reveals that the morphologies of Na0.44MnO2 consist of Na0.44MnO2 nanowires with diameters of about 30-50 nm and Na0.44MnO2 particles with the size in the range of 200 to 500 nm. The first charge and discharge capacities of Na0.44MnO2 cathode, at 0.1 C between 2.0-4.0 V, are 66.2 mAh g-1 and 62.7 mAh g-1, respectively. The Na0.44MnO2 has an excellent cycle stability with 85.3% of capacity retention over 50 cycles. The coulombic efficiency of Na0.44MnO2 material is approximately 90% after 70 cycles. It is suggested that the structure of Na0.44MnO2 is stable during cycling and Na0.44MnO2 can be a promising cathode material for sodium ion batteries.Downloads
References
M. Choi, I.-H. Jo, S.-H. Lee, Y.-I. Jung, J.-K. Moon and W.-K. Choi, Curr. Appl. Phys. 16 (2016)
D. Yuan, X. Hu, J. Qian, F. Pei, F. Wu, R. Mao, X. Ai, H. Yang and Y. Cao, Electrochim. Acta 116
(2014) 300.
N. Van Nghia, P.-W. Ou and I.-M. Hung, Electrochim. Acta 161 (2015) 63.
N. Van Nghia, P.-W. Ou and I.-M. Hung, Ceram. Int. 41 (2015) 10199.
J. Whitacre, A. Tevar and S. Sharma, Electrochem. Commun. 12 (2010) 463.
C. Liu, W.-l. Guo, Q.-h. Wang, J.-g. Li and X.-P. Yang, J. Alloys Compd. 658 (2016) 588.
N. Van Nghia, S. Jaan, I. Hung et al., J. Electron. Mater. 45 (2016) .
Z. Li, D. B. Ravnsbk, K. Xiang and Y.-M. Chiang, Electrochem. Commun. 44 (2014) 12.
H. Wang, X. Gao, J. Feng and S. Xiong, Electrochim. Acta 182 (2015) 769.
N. Nghia, P. D. Long, T. A. Tan, S. Jaan and I.-M. Hung, J. Electron. Mater. 6 (2017) 3689.
A. Caballero, L. Hernan, J. Morales, L. Sanchez, J. S. Pena and M. Aranda, J. Mater. Chem. 12
(2002) 1142.
W. Zhao, H. Kirie, A. Tanaka, M. Unno, S. Yamamoto and H. Noguchi, Mater. Lett. 135 (2014) 131.
D. J. Kim, R. Ponraj, A. G. Kannan, H.-W. Lee, R. Fathi, R. Ruo, C. M. Mari and D. K. Kim, J.
Power Sources 244 (2013) 758.
F. Sauvage, L. Laont, J.-M. Tarascon and E. Baudrin, Inorg. Chem. 46 (2007) 3289.
E. Hosono, T. Saito, J. Hoshino, M. Okubo, Y. Saito, D. Nishio-Hamane, T. Kudo and H. Zhou, J.
Power Sources 217 (2012) 43.
Y. Cao, L. Xiao, W. Wang, D. Choi, Z. Nie, J. Yu, L. V. Saraf, Z. Yang and J. Liu, Adv. Mater. 23
(2011) 3155.
X. He, J. Wang, B. Qiu, E. Paillard, C. Ma, X. Cao, H. Liu, M. C. Stan, H. Liu, T. Gallash et al.,
Nano Energy 27 (2016) 602.
B. Fu, X. Zhou and Y. Wang, J. Power Sources 310 (2016) 102.
Downloads
Published
How to Cite
Issue
Section
License
Communications in Physics is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Copyright on any research article published in Communications in Physics is retained by the respective author(s), without restrictions. Authors grant VAST Journals System (VJS) a license to publish the article and identify itself as the original publisher. Upon author(s) by giving permission to Communications in Physics either via Communications in Physics portal or other channel to publish their research work in Communications in Physics agrees to all the terms and conditions of https://creativecommons.org/licenses/by-sa/4.0/ License and terms & condition set by VJS.


