Nonmaximal Entanglement Can Make Joint Remote State Preparation Absolutely Secure
Author affiliations
DOI:
https://doi.org/10.15625/0868-3166/23/2/2857Keywords:
Entanglement, joint remote state preparation, securityAbstract
Joint remote state preparation is a multiparty global quantum task in which several parties are assigned to jointly prepare a quantum state for a remote party. Although various protocols have been proposed so far, none of them are absolutely secure in the sense that the legitimate parties (the preparers plus the receiver) can by no means identify the state to be prepared even if they all collude with each other. Here we resolve this drawback by employing the quantum channel in terms of nonmaximally entangled states whose parameters are kept secret to all the participants but used to split the information in a judicious way so that not only absolute security in the above-mentioned sense is achieved but also the performance is the simplest possible.Downloads
References
begin{thebibliography}{99}
bibitem{book} {small M. A. Nielsen and I. L. Chuang, {it Quantum
Computaion and Quantum Information} (Cambridge Univertity Press, Cambridge,
.}
bibitem{distill} {small C. H. Bennett, H. J. Bernstein, S. Popescu and B.
Schumacher, {it Phys. Rev. A} {bf 53} (1996) 2046.}
bibitem{r1} {small B. Reznik {it quant-ph/0203055} (2002).}
bibitem{r2} {small B. Groisman and B. Reznik, {it Phys. Rev. A} {bf 71}
(2005) 032322.}
bibitem{r3} {small M. Horodecki , A. Sen De , U. Sen and K. Horodecki,
{it Phys. Rev. Lett.} {bf 90} (2003) 047902.}
bibitem{r4} {small S. Mozes, J. Oppenheim and B. Reznik, {it Phys. Rev. A%
} {bf 71} (2005) 012311.}
bibitem{r5} {small J. Modlawska and A. Grudka, {it Phys. Rev. Lett.}
{bf 100} (2008) 110503.}
bibitem{r6} {small J. Modlawska and A. Grudka, {it Phys. Rev. A} {bf 79}
(2009) 064302.}
bibitem{r7} {small G. Chimczak and R. Tannas, {it Phys. Rev. A} {bf 79}
(2009) 042311.}
bibitem{r8} {small K. Shimiza, K. Tamaki and H. Fukasaka, {it Phys. Rev.
A} {bf 80} (2009) 022323.}
bibitem{r9} {small G. Gordon and G. Rigolin, {it Opt. Commun.} {bf 283}
(2010) 184.}
bibitem{j1a} {small Y. Xia, J. Song and H. S. Song, {it J. Phys. B: At.
Mol. Opt. Phys. } {bf 40} (2007) 3719.}
bibitem{j1b} {small N. B. An and J. Kim, {it J. Phys. B: At. Mol. Opt.
Phys. } {bf 41} (2008) 095501.}
bibitem{j1c} {small N. B. An and J. Kim, {it Int. J. Quant. Inf. } {bf 6%
} (2008) 1051.}
bibitem{j1d} {small C. T. Bich, N. V. Don and N. B. An, {it Int. J.
Theor. Phys. } {bf 51} (2012) 2272.}
bibitem{j1e} {small Y. Su, X. B. Chen and Y. X. Yang, {it Int. J. Quant.
Inf. } {bf 10} (2012) 1250006.}
bibitem{j24pairs} {small N. B. An, {it J. Phys. B: At. Mol. Opt. Phys. }
{bf 42} (2009) 125501.}newline
{small N. B. An, C. T. Bich and N. V. Don, {it Phys. Lett. A } {bf 375}
(2011) 3570.}newline
{small N. V. Don, C. T. Bich and N. B. An, {it Commun. Phys.} {bf 22}
(2012) 193.}
bibitem{j22ghz} {small X. Q. Xiao and J. M. Liu,. {it J. Phys. B: At.
Mol. Opt. Phys.} {bf 44} (2011) 075501.}newline
{small H. H. Liu, L. Y. Cheng, X. Q. Shao, L. L. Sun, S. Zhang and K. H.
Yeon, {it Int. J. Theor. Phys.} {bf 50} (2011) 3023.}
bibitem{j216} {small N. B. An, {it Commun. Phys.} {bf 19} (2009) 1.}%
newline
{small D. Wang, X. W. Zha and Q. Lan, {it Opt. Commun.} {bf 284} (2011)
}
bibitem{j23pair} {small N. B. An, C. T. Bich and N. V. Don, {it J. Phys.
B: At. Mol. Opt. Phys.} {bf 44} (2011) 135506.}
bibitem{jn} {small K. Hou, J. Wang, Y. L. Lu and S. H. Shi, {it Int. J.
Theor. Phys.} {bf 48} (2009) 2005.}newline
{small M. X. Luo, X. B. Chen, S. Y. Ma, Y. X. Yang and Z. M. Hu, {it J.
Phys. B: At. Mol. Opt. Phys.} {bf 43} (2010) 065501.}newline
{small M. X. Luo, X. B. Chen, S. Y. Ma, X. X. Niu and Y. X. Yang, {it Opt.
Commun. } {bf 283} (2010) 4796.}newline
{small N. B. An, {it Opt. Commun.} {bf 283} (2010) 4113.}newline
{small Q. Q. Chen, Y. Xia, J. Song and N. B. An, {it Phys. Lett. A} {bf %
} (2010) 4483.}newline
{small Q. Q. Chen, Y. Xia and N. B. An, {it Opt. Commun.} {bf 284} (1011)
}newline
{small Q. Q. Chen, Y. Xia and J. Song, {it Opt. Commun.} {bf 284} (2011)
}newline
{small Z. Y. Wang, {it Int. J. Quant. Inf.} {bf 9} (2011) 809.}newline
{small Y. B. Zhan, B. L. Hu and P. C. Ma, {it J. Phys. B: At. Mol. Opt.
Phys.} {bf 44} (2011) 095501.}newline
{small Q. Q. Chen, Y. Xia and J. Song, {it J. Phys. A: Math. Theor.} {bf %
} (2012) 055303.}newline
{small L. R. Long, P. Zhou, Z. Li and C. L. Yin, {it Int. J. Theor. Phys.}
{bf 51} (2012) 2438.}newline
{small P. Zhou, {it J. Phys. A: Math. Theor.} {bf 45} (2012) 215305.}%
newline
{small K. Y. Yang and Y. Xia, {it Int. J. Theor. Phys.} {bf 51} (2012)
}newline
{small Y. Xia, Q. Q. Chen and N. B. An, {it J. Phys. A: Math. Theor.} {bf %
} (2012) 335306.}newline
{small M. X. Luo and Y. Deng, {it Int. J. Theor. Phys.} {bf 51} (2012)
}newline
{small D. Wang and L. Ye, {it Int. J. Theor. Phys.} {bf 51} (2012) 3376.}%
newline
{small X. W. Guan, X. B. Chen and Y. X. Yang, 2012 {it Int. J. Theor.
Phys. } {bf 51} (1012) 3575.}newline
{small Q. Q. Chen, Y. Xia and N. B. An, {it Phys. Scr.} {bf 87} (2013)
}
bibitem{exp} {small M. X. Luo, X. B. Chen, Y. X. Yang and X. X. Niu, {it %
Quantum Inf. Process.} {bf 11} (2012) 751.}
bibitem{rsp} {small H. K. Lo, {it Phys. Rev.A} {bf 62} (2000) 012313.}%
newline
{small A. K. Pati, {it Phys. Rev. A} {bf 63} (2000) 014302.} newline
{small C. H. Bennett, D. P., DiVincenzo, P. W. Shor, J. A. Smolin, B. M.
Terhal and W. K. Wootters, {it Phys. Rev. Lett.} {bf 87} (2001) 077902.}
newline
{small N. B. An, C. T. Bich, N. V. Don and J. Kim, {it Adv. Nat. Sci.:
Nanosci. Nanotechnol. } {bf 2} (2011) 035009.}
bibitem{blind} {small A. Broadbent, J. Fitzsimons and E. Kashefi, {it %
Proceedings of the 50th Annual IEEE Symposium on Foumdation of Computer
Science, 2009 }(FOCS) 517.}newline
{small S. Barz, E. Kashefi, A. Broadbent, J. F. Fitzsimons, A. Zeilinger
and P. Walther, {it Science} {bf 335} (2012) 303.}
end{thebibliography}
Downloads
Published
How to Cite
Issue
Section
License
Communications in Physics is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Copyright on any research article published in Communications in Physics is retained by the respective author(s), without restrictions. Authors grant VAST Journals System (VJS) a license to publish the article and identify itself as the original publisher. Upon author(s) by giving permission to Communications in Physics either via Communications in Physics portal or other channel to publish their research work in Communications in Physics agrees to all the terms and conditions of https://creativecommons.org/licenses/by-sa/4.0/ License and terms & condition set by VJS.


