Optical Phonon Modes and Electron-optical Phonon Interaction in Core-shell Semiconductor Quantum Wires
Author affiliations
DOI:
https://doi.org/10.15625/0868-3166/24/4/3268Abstract
Within the framework of the macroscopic dielectric continuum model the longitudinal optical (LO) phonon modes are derived for a cylindrical semiconductor quantum wire made of semiconductor 1 (well material) embedded in another finite semiconductor 2 (barrier material). The phonon states of modes are given by solving the generalized Born-Huang equation. It is shown that there may exist four types of longitudinal optical phonon modes according to the concrete materials forming the wire. The dispersion equations for phonon frequencies with wave-vector components parallel to the wire are obtained. After having quantized the phonon field we derive the Fröhlich Hamiltonian describing the electron--LO-phonon interaction. The influence of the thickness of the barrier layer as well as the thin metallic shell on the phonon frequencies and their interaction with electrons is studied.Downloads
References
Duan X., Huang Y., and Lieber C.M., Nano Lett. 2 (2002) 487.
Cui Y. and Lieber C.M., Science 291 (2001) 851.
Huang Y., Duan X., Cui Y., and Lieber C.M., Nano Lett. 2 (2002) 101.
Cui Y., Wei Q., Park H., and Lieber C.M., Science 293 (2001) 1289.
Karlsson K.F., Weman H., Dupertuis M.-A., Leifer K., Rudra A., and Kapon E., Phys. Rev. B70 (2004) 045302.
Eugster C.C., del Alamo J.A., Rooks M.J., and Melloch M.R., Appl. Phys. Lett. 64 (1994) 3157.
Fischer S.F., Apetrii G., Kunze U., Schuh D., and Abstreiter G., Nature Physics 2 (2006) 91.
Bennett C.H. and DiVincenzo D.P., Nature 404 (2000) 247.
Fan H.J., Werner P., and Zacharias M., Small 2 (2006) 700.
Leburton J.P., J. Appl. Phys. 56 (1984) 2850.
Constantinou N.C. and Ridley B.K., J. Phys.: Condens. Matter 1 (1989) 2283.
Wendler L. and Kugler R., J. Phys.: Condens. Matter 6 (1994) 7857.
Bennett C.R., Constatinou N.C., and Tanatar B., J. Phys.: Condens. Matter 7 (1995) L669.
Mansour N.S., Sirenko Yu.M., Kim K.W., Littlejohn M.A.,Wang J., and Leburton J.P., Appl. Phys. Lett. 67 (1995)
Fai L.C., Teboul V., Monteil A., Maabou S., and Nsangou I., Condens. Matter Phys. 8 (2005) 639.
Fasol G., Tanaka M., Sakaki H., and Horikosh Y., Phys. Rev. B38 (1988) 6056.
Watt M., Sotomayor-Torres C.M., Arnot H.E.G., and Beaumont S.P., Semicond. Sci. Technol. 5 (1990) 285.
Adu K.W., Xiong Q., Gutierrez H.R., Chen G., and Eklund P.C., Appl. Phys. A85 (2006) 287.
Spirkoska D., Abstreiter G., and Fontcuberta i Moral A., Nanotechnology 19 (2008) 435704.
Ren S.F. and Chang Y.C., Phys. Rev. B43 (1991) 11857.
Zhu B.F., Phys. Rev. B44 (1991) 1926; Semiconduc. Sci. Technol. 7 (1992) B88.
Stroscio M.A., Kim K.W., Littlejohn A., and Chuang H., Phys. Rev. B42 (1990) 1488.
Knipp P. and Reinecke T.L., Phys. Rev. B45 (1992) 9091.
Enderlein R., Phys. Rev. B47 (1993) 2162.
Bennett C.R. and Tanatar B., Phys. Rev. B55 (1997) 7165.
Xie H.J., Chen C.Y., and Ma B.K., Phys. Rev. B61 (2000) 4827.
Zhang L., Commun. Theor. Phys. 42 (2004) 459.
Vartanian A.L., Int. J. Mod. Phys. B20 (2006) 3015.
Zuo Z.W. and Xie H.J., J. Phys.: Condens. Matter 22 (2010) 025403.
OPTICAL PHONON MODES AND ELECTRON–OPTICAL PHONON INTERACTION ...
Constantinou N.C. and Ridley B.K., Phys. Rev. B41 (1990) 10622; ibid. B41 (1990) 10627.
Stroscio M.A. and Dutta M., Phonons in Nanostructures, Cambridge Univ., Cambridge, (2001).
Ridley B.K., Electrons and Phonons in Semiconductor Multilayers, 2nd edn, Cambridge Univ., Cambridge,
(2009).
Ridley B.K., Phys. Rev. B47 (1993) 4592.
Wang X.F. and Lei X.L., Solid State Commun. 91 (1994) 513.
Comas F., Cantarero A., Trallero-Giner C., and Moshinsky M., J. Phys.: Condens. Matter 7 (1995) 1789.
Stavrou V.N., Bennett C.R., Al-Dossary O.M.M., and Babiker M., Phys. Rev., B63 (2001) 205304.
Comas F., Camps I., Marques G.E., and Studart N., Semicond. Sci. Technol. 22 (2007) 229.
Gradshteyn I.S. and Ryzhik I.M., Table of integrals, series, and products, 7th edn, Academic Press, New York,
Ridley B.K., Phys. Rev. B39 (1989) 5282.
Downloads
Published
How to Cite
Issue
Section
License
Communications in Physics is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Copyright on any research article published in Communications in Physics is retained by the respective author(s), without restrictions. Authors grant VAST Journals System (VJS) a license to publish the article and identify itself as the original publisher. Upon author(s) by giving permission to Communications in Physics either via Communications in Physics portal or other channel to publish their research work in Communications in Physics agrees to all the terms and conditions of https://creativecommons.org/licenses/by-sa/4.0/ License and terms & condition set by VJS.


