Molecular based identification and phylogenetic relationship by using ITS-rDNA and YCF1 gene of Cinnamomum parthenoxylon (Jack) Meisn. in northern Vietnam

Dinh Duy Vu, Mai Phuong Pham, Thi Tuyet Xuan Bui, Dinh Giap Vu, Quynh Trang Nguyen, Thi Tham Hoang
Author affiliations

Authors

  • Dinh Duy Vu \(^1\) Joint Vietnam-Russia Tropical Science and Technology Research Center, 63 Nguyen Van Huyen, Nghia Do, Hanoi, Vietnam https://orcid.org/0000-0001-5677-6965
  • Mai Phuong Pham \(^1\) Joint Vietnam-Russia Tropical Science and Technology Research Center, 63 Nguyen Van Huyen, Nghia Do, Hanoi, Vietnam <br> \(^2\) Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Nghia Do, Hanoi, Vietnam https://orcid.org/0000-0003-1588-418X
  • Thi Tuyet Xuan Bui \(^3\) Institute of Biology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Nghia Do, Hanoi, Vietnam
  • Dinh Giap Vu \(^4\) HaUI Institute of Technology, Hanoi University of Industry, 298 Cau Dien, Tay Tuu, Hanoi, Vietnam
  • Quynh Trang Nguyen \(^5\) College of Forestry Biotechnology, Vietnam National University of Forestry, Xuan Mai, Hanoi, Vietnam
  • Thi Tham Hoang \(^5\) College of Forestry Biotechnology, Vietnam National University of Forestry, Xuan Mai, Hanoi, Vietnam

DOI:

https://doi.org/10.15625/vjbt-22856

Keywords:

Cinnamomum parthenoxylon, DNA barcoding, ITS-rDNA, phylogenetic tree, ycf1

Abstract

Accurate species identification plays a critical role in conservation, evolutionary studies, and taxonomic classification. Traditional morphological identification is often unreliable, particularly at immature developmental stages, whereas DNA barcoding offers a rapid and precise alternative. In this study, we applied two DNA barcoding regions the nuclear ribosomal DNA (ITS-rDNA) and the chloroplast gene (ycf1) to identify 15 samples of C. parthenoxylon species collected from five geographic regions in northern Vietnam (Quang Ninh, Vinh Phuc, Phu Tho, Hoa Binh, and Thanh Hoa), and to investigate their phylogenetic relationships within the genus Cinnamomum. PCR amplification and sequencing success rates were 100% for both markers. The obtained sequence lengths were 588 bp for ITS-rDNA and 795 bp for ycf1. Base composition analysis showed that ITS-rDNA sequences contained, on average, T (12.1%), C (35.9%), A (16.3%), and G (35.7%), whereas ycf1 sequences comprised T (39.9%), C (15.1%), A (29.9%), and G (15.1%). ITS-rDNA sequence analysis revealed high similarity among the 15 C. parthenoxylon samples, differing by only one nucleotide, and strongly clustered with C. parthenoxylon (MLBS = 92-96%; BPP = 88-98%). In contrast, ycf1 sequences showed five nucleotide differences among the samples and indicated a close relationship with both C. parthenoxylon and C. balansae (MLBS = 67-80%; BPP = 55-74%). Genetic divergence among Cinnamomum species averaged 6% (range 0-13%) for ITS-rDNA and 2% (range 0-4%) for ycf1. These findings suggest that ITS-rDNA is a suitable marker for species identification within Cinnamomum, whereas the ycf1 region has lower resolution and is less effective for distinguishing among closely related species in this genus.

Downloads

Download data is not yet available.

References

Adfa M., Romayasa A., Kusnanda A. J., Avidlyandi A., Yudhas S., Banon C., et al., (2020). Chemical components, antitermite and antifungal activities of Cinnamomum parthenoxylon wood vinegar. Journal of the Korean Wood Science and Technology, 48(1), 107-116. https://doi.org/10.5658/WOOD.2020.48.1.107

Chen Y. C., Li Z., Zhao Y. X., Gao M., Wang J. Y., Liu K. W., et al., (2020). The Litsea genome and the evolution of the laurel family. Nature Communications, 11(1), 1675. https://doi.org/10.1038/s41467-020-15493-5

Decree 84/2021/ND-CP amending Decree 06/2019/ND-CP on management of endangered, precious, and rare forest plants and animals, September 22, 2021.

Gonzalez M. A., Baraloto C., Engel J., Mori S. A., Petronelli P., Riera B., et al., (2009). Identification of Amazonian trees with DNA barcodes. PLoS ONE, 4(10), e7483. https://doi.org/10.1371/journal.pone.0007483

Gostel M. R. and Kress W. J. (2022). The Expanding role of DNA barcodes: Indispensable tools for ecology, evolution, and conservation. Diversity, 14(3), 213. https://doi.org/10.3390/d14030213

Ha B. H., Nguyen T. H., and Hoang V. S. (2022). Nucleotide Diversity of DNA barcode sequence trnH-psbA in Cinnamomum parthenoxylon (Jack) Meisn species in some Northern provinces of Vietnam. Vietnam Journal of Agriculture and Rural Development, 10, 60-70.

Ha B. H., Nguyen T. H., Nguyen T. L. A., Phung V. P., Hoang V. S., and Nguyen X. V. (2021). Identification and genetic diversity assessment of Cinnamomum parthenoxylon in Tam Dao National Park by DNA barcode markers. Forestry Science and Technology Journal, 6, 13-24.

Hall T. A. (1999). BioEdit v7.0.5.2: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series, 41, 95-98.

Huang X. C., Ci X. Q., Conran J. G., and Jie L. (2015). Application of DNA barcodes in asian tropical trees - A case study from Xishuangbanna Nature Reserve, southwest China. PLoS ONE, 10(6), e0129295. https://doi.org/10.1371/journal.pone.0129295

Huang J. F., Li L., van der WerffH., Li, H. W., Rohwer J. G., and Crayn D. M. (2016). Origins and evolution of cinnamon and camphor: A phylogenetic and historical biogeographical analysis of the Cinnamomum group (Lauraceae). Molecular Phylogenetics and Evolution, 96, 33-44. https://doi.org/10.1016/j.ympev.2015.12.007

Ji Y. H., Liu C. K., Yang Z. Y., Yang L. F., He Z. S., Wang H. C., et al., (2019). Testing and using complete plastomes and ribosomal DNA sequences as the next generation DNA barcodes in Panax (Araliaceae). Molecular Ecology Resources, 19(5), 1333-1345. https://doi.org/10.1111/1755-0998.13050.

Jobb G. (2011). TREEFINDER version March 2011. http://www.treefinder.de

Letsiou S., Madesis P., Vasdekis E., Montemurro C., Grigoriou M. E., Skavdis G., et al., (2024). DNA barcoding as a plant identification method. Applied Sciences, 14(4), 1415. https://doi.org/10.3390/app14041415

Li H. W., Li J., Huang P. H., Wei F. N., Cui H. B., and van der Werff H. (2008). Lauraceae. In: Wu ZY, Raven PH, editors. Flora of China, Calycanthaceae-Schisandraceae. Vol. 7. Beijing, and St. Louis, Missouri: Science Press and Missouri Botanical Garden Press. 102-254.

Liu Z. F., Ci X. Q., Li L., Li H. W, Conran J. G., and Li J. (2017). DNA barcoding evaluation and implications for phylogenetic relationships in Lauraceae from China. PLoS ONE, 12(4), e0175788. https://doi.org/10.1371/journal. pone.0175788.

Liu Z. F., Ma H., Ci X. Q., Li L., Song Y., Liu B. et al., (2021). Can plastid genome sequencing be used for species identification in Lauraceae? Botanical Journal of the Linnean Society, 197(1), 1-14. https://doi.org/10.1093/botlinnean/boab018.

Liu Z. F., Ma H., Zhang X. Y., Ci X. Q., Li L., Hu J. L., et al. (2022). Do taxon-specific DNA barcodes improve species discrimination relative to universal barcodes in Lauraceae? Botanical Journal of the Linnean Society, 199(4), 741–753. https://doi.org/10.1093/botlinnean/boab089.

Mo Y. Q., Li L., Li J. W., Rohwer J. G., Li H. W., and Li J. 2017. Alseodaphnopsis: A new genus of Lauraceae based on molecular and morphological evidence. PLoS ONE, 12(10), e0186545. https://doi.org/10.1371/journal.pone.0186545.

Möller M. and Cronk Q. C. B. (2001). Evolution of morphological novelty: A phylogenetic analysis of growth patterns in Streptocarpus (Gesneriaceae). Evolution, 55(5), 918-929.

Nguyen K. D. (2017). Flora of Vietnam – Lauraceae Juss. Science and Technics Publishing House, 20, 219-221 (In Vietnamese).

Nguyen X. D., La D. M., Nguyen D. H., and Leclercq P. A. (1995). Constituents of the essential oils of Cinnamomum parthenoxylon (Jack) Nees from Vietnam. Journal of Essential Oil Research, 7(1), 53–56. https://doi.org/10.1080/10412905.1995.9698462

Pham M. P., Tran V. H., Vu D. D., Nguyen Q. K., and Shah A. N. H. (2021). Phylogenetics of native conifer species in Viet Nam based on two chloroplast gene regions rbcL and matK. Czech Journal of Genetics and Plant Breeding, 57(2), 58-66. https://doi.org/10.17221/88/2020-CJGPB

Pham M. P., Vu D. D., Bei C., Bui T. T. X., Vu D. G., and Shah S. N. M. (2024). Characterisation of the Cinnamomum parthenoxylon (Jack) Meisn (Lauraceae) transcriptome using Illumina paired-end sequencing and EST-SSR markers development for population genetics. Biodiversity Data Journal, 12, e123405. https://doi.org/10.3897/BDJ.12.e123405

Qiu F., Yang H., Fu C., Zhou S., Sheng Y., and Zhang T. (2023). Essential oil diversity of Cinnamomum parthenoxylon (Jack) Meisner from China. South African Journal of Botany, 158, 452-460. https://doi.org/10.1016/j.sajb.2023.05.037.

Rambaut A. and Drummond A. (2009). TRACER version 1.5. http://beast.bio.ed.ac.uk/Tracer

Ronquist F. and Huelsenbeck J. P. (2003). MrBAYES 2.3: Bayesian phylogenetic inference under mixed models. Bioinformatics, 19(12), 1572-1574. https://doi.org/10.1093/bioinformatics/btg180.

Song Y., Yu W. B., Tan Y. H., Jin J. J., Wang B., Yang J. B., et al., (2020). Plastid phylogenomics improves phylogenetic resolution in the Lauraceae. Journal of Systematics and Evolution, 58(4), 423-439. https://doi.org/10.1111/jse.12536

Sudmoon R., Chaveerach A., Sanublo A., Monkheang P., Kwanda N., Aungkapatatamgul S., et al., (2014). Identifying efficiency in herbal medicine Cinnamomum species (Lauraceae) using banding patterns and sequence alignments of rpoB, rbcL, and matK regions. Chiang Mai Journal of Science, 41(5.1), 1094-1108.

Tamura K., Stecher G., and Kumar S. (2021). MEGA11: Molecular evolutionary genetics analysis version 11. Molecular Biology and Evolution, 38(7), 3022-3027. https://doi.org/10.1093/molbev/msab120.

Tanabe A.S. (2011). Kakusan and Aminosan: two programs for comparing nonpartitioned, proportional, and separate models for combined molecular phylogenetic analyses of multilocus sequence data. Molecular Ecology Resources, 11(5), 914–921. https://doi.org/10.1111/j.1755-0998.2011.03021.x.

Tangjitjaroenkun J., Tangchitcharoenkhul R., Yahayo W., Supabphol S., Sappapan R., and Supabphol R. (2020). Chemical compositions of essential oils of Amomum verum and Cinnamomum parthenoxylon and their in vitro biological properties. Journal of Herbmed Pharmacology, 9(3), 223-229. https://doi.org/10.34172/jhp.2020.29.

VAST. (2024). Vietnam red data book, part II. Plants and Fungi. Natural Science and Technology Publishing House, 435-536 (In Vietnamese)

Vu D. G., Khuat T. M. H., Pham N.A., Pham M. P., and Vu D. D. (2022). Genetic diversity evaluation of Cinnamomum parthenoxylon (Jack) Meisn in some nature

Downloads

Published

30-09-2025

How to Cite

Vu, D. D., Pham, M. P., Bui, T. T. X., Vu, D. G., Nguyen, Q. T., & Hoang, T. T. (2025). Molecular based identification and phylogenetic relationship by using <i>ITS-rDNA</i> and <i>YCF1<i/> gene of <i>Cinnamomum parthenoxylon</i> (Jack) Meisn. in northern Vietnam. Vietnam Journal of Biotechnology, 23(3), 369–390. https://doi.org/10.15625/vjbt-22856

Issue

Section

Articles

Most read articles by the same author(s)

Similar Articles

<< < 5 6 7 8 9 10 11 > >> 

You may also start an advanced similarity search for this article.