Molecular based identification and phylogenetic relationship by using ITS-rDNA and YCF1 gene of Cinnamomum parthenoxylon (Jack) Meisn. in northern Vietnam
Author affiliations
DOI:
https://doi.org/10.15625/vjbt-22856Keywords:
Cinnamomum parthenoxylon, DNA barcoding, ITS-rDNA, phylogenetic tree, ycf1Abstract
Accurate species identification plays a critical role in conservation, evolutionary studies, and taxonomic classification. Traditional morphological identification is often unreliable, particularly at immature developmental stages, whereas DNA barcoding offers a rapid and precise alternative. In this study, we applied two DNA barcoding regions the nuclear ribosomal DNA (ITS-rDNA) and the chloroplast gene (ycf1) to identify 15 samples of C. parthenoxylon species collected from five geographic regions in northern Vietnam (Quang Ninh, Vinh Phuc, Phu Tho, Hoa Binh, and Thanh Hoa), and to investigate their phylogenetic relationships within the genus Cinnamomum. PCR amplification and sequencing success rates were 100% for both markers. The obtained sequence lengths were 588 bp for ITS-rDNA and 795 bp for ycf1. Base composition analysis showed that ITS-rDNA sequences contained, on average, T (12.1%), C (35.9%), A (16.3%), and G (35.7%), whereas ycf1 sequences comprised T (39.9%), C (15.1%), A (29.9%), and G (15.1%). ITS-rDNA sequence analysis revealed high similarity among the 15 C. parthenoxylon samples, differing by only one nucleotide, and strongly clustered with C. parthenoxylon (MLBS = 92-96%; BPP = 88-98%). In contrast, ycf1 sequences showed five nucleotide differences among the samples and indicated a close relationship with both C. parthenoxylon and C. balansae (MLBS = 67-80%; BPP = 55-74%). Genetic divergence among Cinnamomum species averaged 6% (range 0-13%) for ITS-rDNA and 2% (range 0-4%) for ycf1. These findings suggest that ITS-rDNA is a suitable marker for species identification within Cinnamomum, whereas the ycf1 region has lower resolution and is less effective for distinguishing among closely related species in this genus.
Downloads
References
Adfa M., Romayasa A., Kusnanda A. J., Avidlyandi A., Yudhas S., Banon C., et al., (2020). Chemical components, antitermite and antifungal activities of Cinnamomum parthenoxylon wood vinegar. Journal of the Korean Wood Science and Technology, 48(1), 107-116. https://doi.org/10.5658/WOOD.2020.48.1.107
Chen Y. C., Li Z., Zhao Y. X., Gao M., Wang J. Y., Liu K. W., et al., (2020). The Litsea genome and the evolution of the laurel family. Nature Communications, 11(1), 1675. https://doi.org/10.1038/s41467-020-15493-5
Decree 84/2021/ND-CP amending Decree 06/2019/ND-CP on management of endangered, precious, and rare forest plants and animals, September 22, 2021.
Gonzalez M. A., Baraloto C., Engel J., Mori S. A., Petronelli P., Riera B., et al., (2009). Identification of Amazonian trees with DNA barcodes. PLoS ONE, 4(10), e7483. https://doi.org/10.1371/journal.pone.0007483
Gostel M. R. and Kress W. J. (2022). The Expanding role of DNA barcodes: Indispensable tools for ecology, evolution, and conservation. Diversity, 14(3), 213. https://doi.org/10.3390/d14030213
Ha B. H., Nguyen T. H., and Hoang V. S. (2022). Nucleotide Diversity of DNA barcode sequence trnH-psbA in Cinnamomum parthenoxylon (Jack) Meisn species in some Northern provinces of Vietnam. Vietnam Journal of Agriculture and Rural Development, 10, 60-70.
Ha B. H., Nguyen T. H., Nguyen T. L. A., Phung V. P., Hoang V. S., and Nguyen X. V. (2021). Identification and genetic diversity assessment of Cinnamomum parthenoxylon in Tam Dao National Park by DNA barcode markers. Forestry Science and Technology Journal, 6, 13-24.
Hall T. A. (1999). BioEdit v7.0.5.2: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series, 41, 95-98.
Huang X. C., Ci X. Q., Conran J. G., and Jie L. (2015). Application of DNA barcodes in asian tropical trees - A case study from Xishuangbanna Nature Reserve, southwest China. PLoS ONE, 10(6), e0129295. https://doi.org/10.1371/journal.pone.0129295
Huang J. F., Li L., van der WerffH., Li, H. W., Rohwer J. G., and Crayn D. M. (2016). Origins and evolution of cinnamon and camphor: A phylogenetic and historical biogeographical analysis of the Cinnamomum group (Lauraceae). Molecular Phylogenetics and Evolution, 96, 33-44. https://doi.org/10.1016/j.ympev.2015.12.007
Ji Y. H., Liu C. K., Yang Z. Y., Yang L. F., He Z. S., Wang H. C., et al., (2019). Testing and using complete plastomes and ribosomal DNA sequences as the next generation DNA barcodes in Panax (Araliaceae). Molecular Ecology Resources, 19(5), 1333-1345. https://doi.org/10.1111/1755-0998.13050.
Jobb G. (2011). TREEFINDER version March 2011. http://www.treefinder.de
Letsiou S., Madesis P., Vasdekis E., Montemurro C., Grigoriou M. E., Skavdis G., et al., (2024). DNA barcoding as a plant identification method. Applied Sciences, 14(4), 1415. https://doi.org/10.3390/app14041415
Li H. W., Li J., Huang P. H., Wei F. N., Cui H. B., and van der Werff H. (2008). Lauraceae. In: Wu ZY, Raven PH, editors. Flora of China, Calycanthaceae-Schisandraceae. Vol. 7. Beijing, and St. Louis, Missouri: Science Press and Missouri Botanical Garden Press. 102-254.
Liu Z. F., Ci X. Q., Li L., Li H. W, Conran J. G., and Li J. (2017). DNA barcoding evaluation and implications for phylogenetic relationships in Lauraceae from China. PLoS ONE, 12(4), e0175788. https://doi.org/10.1371/journal. pone.0175788.
Liu Z. F., Ma H., Ci X. Q., Li L., Song Y., Liu B. et al., (2021). Can plastid genome sequencing be used for species identification in Lauraceae? Botanical Journal of the Linnean Society, 197(1), 1-14. https://doi.org/10.1093/botlinnean/boab018.
Liu Z. F., Ma H., Zhang X. Y., Ci X. Q., Li L., Hu J. L., et al. (2022). Do taxon-specific DNA barcodes improve species discrimination relative to universal barcodes in Lauraceae? Botanical Journal of the Linnean Society, 199(4), 741–753. https://doi.org/10.1093/botlinnean/boab089.
Mo Y. Q., Li L., Li J. W., Rohwer J. G., Li H. W., and Li J. 2017. Alseodaphnopsis: A new genus of Lauraceae based on molecular and morphological evidence. PLoS ONE, 12(10), e0186545. https://doi.org/10.1371/journal.pone.0186545.
Möller M. and Cronk Q. C. B. (2001). Evolution of morphological novelty: A phylogenetic analysis of growth patterns in Streptocarpus (Gesneriaceae). Evolution, 55(5), 918-929.
Nguyen K. D. (2017). Flora of Vietnam – Lauraceae Juss. Science and Technics Publishing House, 20, 219-221 (In Vietnamese).
Nguyen X. D., La D. M., Nguyen D. H., and Leclercq P. A. (1995). Constituents of the essential oils of Cinnamomum parthenoxylon (Jack) Nees from Vietnam. Journal of Essential Oil Research, 7(1), 53–56. https://doi.org/10.1080/10412905.1995.9698462
Pham M. P., Tran V. H., Vu D. D., Nguyen Q. K., and Shah A. N. H. (2021). Phylogenetics of native conifer species in Viet Nam based on two chloroplast gene regions rbcL and matK. Czech Journal of Genetics and Plant Breeding, 57(2), 58-66. https://doi.org/10.17221/88/2020-CJGPB
Pham M. P., Vu D. D., Bei C., Bui T. T. X., Vu D. G., and Shah S. N. M. (2024). Characterisation of the Cinnamomum parthenoxylon (Jack) Meisn (Lauraceae) transcriptome using Illumina paired-end sequencing and EST-SSR markers development for population genetics. Biodiversity Data Journal, 12, e123405. https://doi.org/10.3897/BDJ.12.e123405
Qiu F., Yang H., Fu C., Zhou S., Sheng Y., and Zhang T. (2023). Essential oil diversity of Cinnamomum parthenoxylon (Jack) Meisner from China. South African Journal of Botany, 158, 452-460. https://doi.org/10.1016/j.sajb.2023.05.037.
Rambaut A. and Drummond A. (2009). TRACER version 1.5. http://beast.bio.ed.ac.uk/Tracer
Ronquist F. and Huelsenbeck J. P. (2003). MrBAYES 2.3: Bayesian phylogenetic inference under mixed models. Bioinformatics, 19(12), 1572-1574. https://doi.org/10.1093/bioinformatics/btg180.
Song Y., Yu W. B., Tan Y. H., Jin J. J., Wang B., Yang J. B., et al., (2020). Plastid phylogenomics improves phylogenetic resolution in the Lauraceae. Journal of Systematics and Evolution, 58(4), 423-439. https://doi.org/10.1111/jse.12536
Sudmoon R., Chaveerach A., Sanublo A., Monkheang P., Kwanda N., Aungkapatatamgul S., et al., (2014). Identifying efficiency in herbal medicine Cinnamomum species (Lauraceae) using banding patterns and sequence alignments of rpoB, rbcL, and matK regions. Chiang Mai Journal of Science, 41(5.1), 1094-1108.
Tamura K., Stecher G., and Kumar S. (2021). MEGA11: Molecular evolutionary genetics analysis version 11. Molecular Biology and Evolution, 38(7), 3022-3027. https://doi.org/10.1093/molbev/msab120.
Tanabe A.S. (2011). Kakusan and Aminosan: two programs for comparing nonpartitioned, proportional, and separate models for combined molecular phylogenetic analyses of multilocus sequence data. Molecular Ecology Resources, 11(5), 914–921. https://doi.org/10.1111/j.1755-0998.2011.03021.x.
Tangjitjaroenkun J., Tangchitcharoenkhul R., Yahayo W., Supabphol S., Sappapan R., and Supabphol R. (2020). Chemical compositions of essential oils of Amomum verum and Cinnamomum parthenoxylon and their in vitro biological properties. Journal of Herbmed Pharmacology, 9(3), 223-229. https://doi.org/10.34172/jhp.2020.29.
VAST. (2024). Vietnam red data book, part II. Plants and Fungi. Natural Science and Technology Publishing House, 435-536 (In Vietnamese)
Vu D. G., Khuat T. M. H., Pham N.A., Pham M. P., and Vu D. D. (2022). Genetic diversity evaluation of Cinnamomum parthenoxylon (Jack) Meisn in some nature
