Additive Effects of Macromolecular Crowding and Confinement on Protein Stability
Author affiliations
DOI:
https://doi.org/10.15625/0868-3166/28/4/13194Keywords:
confinement, crowding, molecular dynamics, protein foldingAbstract
Folding of protein in vivo typically occurs in a solution highly crowded by macromolecules and in a confined space. It has been found that the effects of macromolecular crowding and confinement are similar in terms of the enhancement of protein stability. However, these effects are often considered separately in theoretical and simulation studies. In this study, by using coarse-grained models and Langevin dynamics, we show that the two effects are additive to each other when they are both present. Both crowding and confinement give rise to the folding temperature and the folding stability of protein. It is shown that the folding free energy change due to crowding in the confined condition can be fitted to Minton scaled particle theory by assuming a linear dependence of the effective radius of the protein unfolded state on the volume fraction of crowders.
Downloads
Downloads
Published
How to Cite
Issue
Section
License
Communications in Physics is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Copyright on any research article published in Communications in Physics is retained by the respective author(s), without restrictions. Authors grant VAST Journals System (VJS) a license to publish the article and identify itself as the original publisher. Upon author(s) by giving permission to Communications in Physics either via Communications in Physics portal or other channel to publish their research work in Communications in Physics agrees to all the terms and conditions of https://creativecommons.org/licenses/by-sa/4.0/ License and terms & condition set by VJS.


