Effects of ribosomal exit tunnel on protein's cotranslational folding
Author affiliations
DOI:
https://doi.org/10.15625/0868-3166/23/3/3119Keywords:
cotranslational folding, nascent proteins, ribosomal exit tunnel, molecular dynamicsAbstract
In vivo, folding of many proteins occurs during their synthesis in the ribosomeand continues after they have escaped from the ribosomal exit tunnel. Inthis research, we investigate the confinement effects of the ribosome on thecotranslational folding of three proteins, of PDB codes 1PGA, 1CRN and 2RJX,by using a coarse-grained model and molecular dynamics simulation. The exittunnel is modeled as a hollow cylinder attached to a flat wall, whereas aGo-like model is adopted for the proteins. Our results show that theexit tunnel has a strong effect on the folding mechanism by setting an order bywhich the secondary and tertiary structures are formed. For protein 1PGA, thefolding follows two different folding routes. The presence of the tunnel alsoimproves the foldability of protein.Downloads
References
C. B. Anfinsen, Science 181 (1973) 223-230.
A. Matouschek, J. T. Kellis, L. Serrano and A. R. Fersht, Nature 340 (1989) 122-126.
K. A. Dill, H. S. Chan, Nat. Struct. Biol. 4 (1997) 10-19.
J. N. Onuchic, P. G. Wolynes, Curr. Opin. Struct. Biol. 14 (2004) 70-75.
T. X. Hoang, A. Trovato, F. Seno, J. R. Banavar, and A. Maritan, Proc. Natl. Acad. Sci. USA. 101 (2004) 7960-7964.
R. D. Schaeffer, A. Fersht, V. Daggett, Curr. Opin. Struct. Biol. 18 (2008) 4-9.
M. S. Cheung, D. Klimov, and D. Thirmalai, Proc. Natl. Acad. Sci. USA 102 (2005) 4753-4758.
F. Ulrich Hartl, and M. Hayer-Hartl, Nat. Struct. Mol. Biol. 16 (2009) 574-581.
A. A. Komar, Trends Biochem. Sci. 34 (2009) 16-24.
G. Kramer, D. Boehringer, N. Ban, B. Bukau, Nat. Struct. Mol. Biol. 16 (2009) 589-597.
L. D. Cabrita, C. M. Dobson, J. Christodoulou, Curr. Opin. Struct. Biol. 20 (2010) 33-45.
C. M. Kaiser, D. H. Goldman, J. D. Chodera, I. Tinoco Jr., C. Bustamante, Science 334 (2011) 1723.
D. Marenduzzo, T. X. Hoang, F. Seno, M. Vendruscolo and A. Maritan, Phys. Rev. Lett. 95 (2005) 098103.
D. N. Wilson, R. Beckmann, Curr. Opin. Struct. Biol. 21 (2011) 274-282.
N. Ban, P. Nissen, J. Hansen, P. B. Moore, T. A. Steitz, Science 289 (2000) 905-920.
A. Kosolapov, C. Deutsch, Nat. Struct. Mol. Biol. 16 (2009) 405-411.
N. Go and H. Abe, Biopolymers, 20 (1981) 991.
T. X. Hoang and M. Cieplak, J. Chem. Phys., 113 (2000) 8319.
D. Baker, Nature (London), 405 (2002) 39.
C. Clementi, H. Nymeyer, J. N. Onuchic, J. Mol. Biol. 298 (2000) 937-953.
R.J. Gilbert, P. Fucini, S. Connell, S. D. Fuller, K. H. Nierhaus,
C. V. Robinson, C. M. Dobson, D. I. Stuart, Mol. Cell 14 (2004) 57-66.
S. Fulle, H. Gohlke, J. Mol. Biol. 387 (2009) 502-517.
Downloads
Published
How to Cite
Issue
Section
License
Communications in Physics is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Copyright on any research article published in Communications in Physics is retained by the respective author(s), without restrictions. Authors grant VAST Journals System (VJS) a license to publish the article and identify itself as the original publisher. Upon author(s) by giving permission to Communications in Physics either via Communications in Physics portal or other channel to publish their research work in Communications in Physics agrees to all the terms and conditions of https://creativecommons.org/licenses/by-sa/4.0/ License and terms & condition set by VJS.


