Quantum Transport Through a ``Charge" Kondo Circuit: Effects of Weak Repulsive Interaction in Luttinger Liquid
Author affiliations
DOI:
https://doi.org/10.15625/0868-3166/30/1/14685Keywords:
thermoelectric transport, Luttinger liquid, single-channel Kondo effect, Fermi liquidAbstract
We investigate theoretically quantum transport through the ``charge" Kondo circuit consisting of the quantum dot (QD) coupled weakly to an electrode at temperature \(T+\Delta T\) and connected strongly to another electrode at the reference temperature \(T\) by a single-mode quantum point contact (QPC). To account for the effects of Coulomb interaction in the QD-QPC setup operating in the integer quantum Hall regime we describe the edge current in the quantum circuit by Luttinger model characterized by the Luttinger parameter \(g\). It is shown that the temperature dependence of both electric conductance \(G\propto T^{2/g}\) and thermoelectric coefficient \(G_T\propto T^{1+2/g}\) detours from the Fermi-liquid (FL) theory predictions. The behaviour of the thermoelectric power \(S=G_T/G\propto T\) in a regime of a single-channel Kondo effect is, by contrast, consistent with the FL paradigm. We demonstrate that the interplay between the mesoscopic Coulomb blockade in QD and weak repulsive interaction in the Luttinger Liquid \(g=1-\alpha\) \((\alpha \ll 1)\) results in the enhancement of the thermopower. This enhancement is attributed to suppression of the Kondo correlations in the ``charge" circuit by the destructive quantum interference effects.
Downloads
References
G. Benenti, G. Casati, K. Saito, and R. S. Whitney, Phys. Rep. 694 (2017) 1.
V. Zlatic and R. Monnier, Modern Theory of Thermoelectricity, Oxford University Press, Oxford, 2014.
Y. M. Blanter and Y. V. Nazarov, Quantum Transport: Introduction to Nanoscience, Cambridge University Press,
Cambridge, 2009.
K. Kikoin, M. N. Kiselev, and Y. Avishai, Dynamical Symmetry for Nanostructures. Implicit Symmetry in SingleElectron Transport Through Real and Artificial Molecules, Springer, New York, 2012.
C. W. J. Beenakker and A. A. M. Staring, Phys. Rev. B 46 (1992) 9667.
A. V. Andreev and K. A. Matveev, Phys. Rev. Lett. 86 (2001) 280; K. A. Matveev and A. V. Andreev, Phys. Rev.
B 66 (2002) 045301.
R. Scheibner, H. Buhmann, D. Reuter, M. N. Kiselev, and L. W. Molenkamp, Phys. Rev. Lett. 95 (2005) 176602.
R. Scheibner, E. G. Novik, T. Borzenko, M. Konig, D. Reuter, A.D. Wieck, H. Buhmann and L. W. Molenkamp,
Phys. Rev. B 75 (2007) 041301.
J. Kondo, Prog. Theor. Phys. 32 (1964) 37.
A. Hewson, The Kondo Problem to Heavy Fermions, Cambridge University Press, Cambridge, England, 1993.
Z. Iftikhar, S. Jezouin, A. Anthore, U. Gennser, F. D. Parmentier, A. Cavanna, and F. Pierre, Nature 526 (2015)
Z. Iftikhar, A. Anthore, A. K. Mitchell, F. D. Parmentier, U. Gennser, A. Ouerghi, A. Cavanna, C. Mora, P. Simon,
and F. Pierre, Science 360 (2018) 1315.
K. Flensberg, Phys. Rev. B 48 (1993) 11156.
K. A. Matveev, Phys. Rev. B 51 (1995) 1743.
A. Furusaki and K. A. Matveev, Phys. Rev. B 52 (1995) 16676.
T. K. T. Nguyen and M. N. Kiselev, Phys. Rev. B 97 (2018) 085403.
K. Le Hur, Phys. Rev. B 64 (2001) 161302(R).
K. Le Hur and G. Seelig, Phys. Rev. B 65 (2002) 165338.
T. K. T. Nguyen, M. N. Kiselev, and V. E. Kravtsov, Phys. Rev. B 82 (2010) 113306.
T. K. T. Nguyen, and M. N. Kiselev, Phys. Rev. B 92 (2015) 045125.
L. D. Landau, Sov. Phys. JETP 3 (1957) 920; 5 (1957) 101.
Ph. Nozieres and A. Blandin, ` J. Phys. 41 (1980) 193.
A. O. Gogolin, A. A. Nersesyan, and A. M. Tsvelik, Bosonization and strongly correlated systems, Cambridge
University Press, 1998.
T. Giamarchi, Quantum Physics in One Dimension, Oxford University Press, Oxford, 2004.
S. Tomonaga, Prog. Theor. Phys. 5 (1950) 544.
J. M. Luttinger, Phys. Rev. 135 (1964) A1505.
H. J. Schulz, G. Cuniberti, and P. Pieri Fermi liquids and Luttinger liquids In: G. Morandi et al. (eds) Field
Theories for Low-Dimensional Condensed Matter Systems. Springer Series in Solid-State Sciences, Springer,
Berlin, Heidelberg, 2000.
D. Sen` echal, ` An Introduction to Bosonization In: D. Sen` echal, A.M. Tremblay, C. Bourbonnais, (eds) ` Theoretical
Methods for Strongly Correlated Electrons. CRM Series in Mathematical Physics, Springer, New York, 2004.
S. Jezouin, F. D. Parmentier, A. Anthore, U. Gennser, A. Cavanna, Y. Jin, F. Pierre, Science 342 (2013) 601.
L. I. Glazman, I. M. Ruzin, B. I. Shklovskii, Phys. Rev. B 45 (1992) 8454.
C. L. Kane and Matthew P. A. Fisher. Phys. Rev. Lett. 68 (1992) 1220; C. L. Kane and Matthew P. A. Fisher. Phys.
Rev. B 46 (1992) 15233.
O. M. Auslaender, H. Steinberg, A. Yacoby, Y. Tserkovnyak, B. I. Halperin, K. W. Baldwin, L. N. Pfeiffer, K. W.
West, Science 308 (2005) 88.
Y. Tserkovnyak, B. I. Halperin, O. M. Auslaender, A. Yacoby, Signatures of Spin-Charge Separation in DoubleQuantum Wire Tunneling In: A. Glatz, V. I. Kozub, V. M. Vinokur, (eds) Theory of Quantum Transport in Metallic
and Hybrid Nanostructures. NATO Science Series, vol. 230, Springer, Dordrecht, 2006.
I. L. Aleiner and L. I. Glazman, Phys. Rev. B 57 (1998) 9608.
C. L. Kane and Matthew P. A. Fisher, Phys. Rev. Lett. 76 (1996) 3192
Downloads
Published
How to Cite
Issue
Section
License
Communications in Physics is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Copyright on any research article published in Communications in Physics is retained by the respective author(s), without restrictions. Authors grant VAST Journals System (VJS) a license to publish the article and identify itself as the original publisher. Upon author(s) by giving permission to Communications in Physics either via Communications in Physics portal or other channel to publish their research work in Communications in Physics agrees to all the terms and conditions of https://creativecommons.org/licenses/by-sa/4.0/ License and terms & condition set by VJS.


