Interaction Between Two Jackiw-Rebbi States in Interfaced Binary Waveguide Arrays with Cubic-quintic Nonlinearity
Author affiliations
DOI:
https://doi.org/10.15625/0868-3166/15178Keywords:
soliton, binary waveguide array, cubic-quintic nonlinearityAbstract
We study the coupling and switching effects of two discrete relativistic quantum Jackiw-Rebbi states in interfaced binary waveguide arrays with cubic-quintic nonlinearity. Like in the case with Kerr nonlinearity, two Jackiw-Rebbi states can couple efficiently to each other in the low-power regime, show the switching effect in the intermediate-power regime, and possess the trapping effect in the high-power regime. However, in the case with cubic-quintic nonlinearity, if the input Jackiw-Rebbi state power is increased further, one can observe the quasi-linear coupling effect between two Jackiw-Rebbi states which has not been found between two Jackiw-Rebbi states in interfaced binary waveguide arrays with Kerr nonlinearity.Downloads
References
[1] D. N. Christodoulides, F. Lederer, and Y. Silberberg, Nature 424 (2003) 817.
[2] D. N. Christodoulides and R. I. Joseph, Opt. Lett. 13 (1988) 794.
[3] G. P. Agrawal, Applications of Nonlinear Fiber Optics}, 2nd. (Academic Press, New York, 2008).
[4] A. L. Jones, J. Opt. Soc. Am. textbf{55 (1965) 261.
[5] Tr. X. Tran and F. Biancalana, Phys. Rev. Lett. 110 (2013) 113903.
[6] M. Ghulinyan, C. J. Oton, Z. Gaburro, L. Pavesi, C. Toninelli, and D. S. Wiersma, Phys. Rev. Lett. 94 (2005) 127401.
[7] T. Pertsch, P. Dannberg, W. Elein, A. Br"{a}uer, and F. Lederer, Phys. Rev. Lett. 83 (1999) 4752.
[8] S. Longhi, Phys. Rev. B 81 (2010) 075102 .
[9] F. Dreisow, R. Keil, A. T"{u}nnermann, S. Nolte, S. Longhi, and A. Szameit, Europhys. Lett. textbf{97 (2012) 10008.
[10] Q. Nguyen-The and Tr. X. Tran, J. Opt. Soc. Am. B 37 (2020) 1911.
[11] F. Dreisow, M. Heinrich, R. Keil, A. T"{u}nnermann, S. Nolte, S. Longhi, and A. Szameit, Phys. Rev. Lett. 105 (2010) 143902.
[12] Tr. X. Tran, S. Longhi, and F. Biancalana, Ann. Phys. 340 (2014) 179.
[13] Tr. X. Tran, X. N. Nguyen, and D. C. Duong, J. Opt. Soc. Am. B 31 (2014) 1132.
[14] Tr. X. Tran, X. N. Nguyen, and F. Biancalana, Phys. Rev. A 91 (2015) 023814.
[15] Tr. X. Tran and D. C. Duong, Ann. Phys. textbf{361 (2015) 501.
[16] Tr. X. Tran., H. M. Nguyen, and H. D. Phung, Commun. in Phys. 27 (2017) 205.
[17] Tr. X. Tran and D. C. Duong, Chaos 28 (2018) 013112.
[18] Tr. X. Tran, J. Opt. Soc. Am. B 36 (2019) 2001.
[19] R. Jackiw and C. Rebbi, Phys. Rev. D 13 (1976) 3398.
[20] Tr. X. Tran and F. Biancalana, Phys. Rev. A 96 (2017) 013831.
[21] R. B. Laughlin, Rev. Mod. Phys. 71 (1999) 863.
[22] M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. textbf{82 (2010) 3045.
[23] M. C. Rechtsman, J. M. Zeuner, Y. Plotnik, Y. Lumer, D. Podolsky, F. Dreisow, S. Nolte, M. Segev, and A. Szameit, Nature 496 (2013) 196.
[24] Tr. X. Tran, J. Opt. Soc. Am. B 36 (2019) 2559.
[25] N. N. Rosanov and Tr. X. Tran, Chaos 17 (2007) 037114.
[26] Tr. X. Tran, H. M. Nguyen, and D. C. Duong, Phys. Rev. A textbf{100 (2019) 053849.
[27] Tr. X. Tran, Chaos 30 (2020) 063134.
[28] Tr. X. Tran, D. C. Duong, and F. Biancalana, J. Lightwave Technol. textbf{35 (2017) 5092.
[29] Tr. X. Tran, Phys. Rev. A 101 (2020) 063826.
[30] N. Akhmediev and A. Ankiewicz, Eds., Dissipative Soli-tons (Springer, New York, 2005).
[31] G. P. Agrawal, Nonlinear Fiber Optics}, 5th ed. (Academic Press, New York, 2013).
[32] Y. S. Kivshar and G. P. Agrawal, Optical Solitons: from Fiber to Photonic Crystals}, 5th ed. (Academic, New York, 2003).
[33] B. Lawrence, W. E. Torruellas, M. Cha, M. L. Sundheimer, and G. I. Stegeman, Phys. Rev. Lett. 73 (1994) 597.
[34] R. Morandotti, U. Peschel, J. S. Aitchison, H. S. Eisenberg, and Y. Silberberg, Phys. Rev. Lett. 83 (1999) 4756.
Downloads
Published
How to Cite
Issue
Section
License
Communications in Physics is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Copyright on any research article published in Communications in Physics is retained by the respective author(s), without restrictions. Authors grant VAST Journals System (VJS) a license to publish the article and identify itself as the original publisher. Upon author(s) by giving permission to Communications in Physics either via Communications in Physics portal or other channel to publish their research work in Communications in Physics agrees to all the terms and conditions of https://creativecommons.org/licenses/by-sa/4.0/ License and terms & condition set by VJS.


