Edge Effects of Truncated Dirac Solitons in Binary Waveguide Arrays
Author affiliations
DOI:
https://doi.org/10.15625/0868-3166/27/3/10653Keywords:
nonlinear optics, binary waveguide array, Dirac solitonAbstract
We investigate the edge effects of the optical analogue of the quantum relativistic Dirac solitons in binary waveguide arrays with Kerr nonlinearity when one tail of the Dirac soliton is truncated. We show that if the outermost waveguide of the binary waveguide array hosts the intense component of the truncated Dirac soliton, then Dirac soliton will be repeatedly bent towards the binary waveguide array edge. In the contrast, if the outermost waveguide of the binary waveguide array hosts the weak component of the truncated Dirac soliton, then Dirac soliton will be pushed away from the binary waveguide array edge. To the best of our knowledge, these unique features have not been found in any other systems.Downloads
References
F. Lederer, G.I. Stegeman, D.N. Christodoulides, G. Assanto, M. Segev, and Y. Silberberg, Phys. Reports 463 (2008) 1.
D. N. Christodoulides, F. Lederer, and Y. Silberberg, Nature 424 (2003) 817.
T. Pertsch, P. Dannberg, W. Elflein, A. Brӓuer, and F. Lederer, Phys. Rev. Lett. 83 (1999) 4752.
R. Morandotti, U. Peschel, J.S. Aitchison, H.S. Eisenb erg, and Y. Silberberg, Phys. Rev. Lett. 83 (1999) 4756.
M. Ghulinyan, C.J. Oton, Z. Gaburro, L. Pavesi, C. Toninelli, and D.S. Wiersma, Phys. Rev. Lett. 94 (2005) 127401.
H. Trompeter, T. Pertsch, F. Lederer, D. Michaelis, U. Streppel, A. Brӓuer, and U. Peschel, Phys. Rev. Lett. 96 (2006) 023901.
Tr.X. Tran and F. Biancalana, Phys. Rev. Lett. 110 (2013) 113903.
Tr.X. Tran and F. Biancalana, Opt. Exp. 21 (2013) 17539.
Tr.X. Tran, D.C. Duong, and F. Biancalana, Phys. Rev. A 89 (2014) 013826.
S. Longhi, Phys. Rev. B 81 (2010) 075102.
F. Dreisow, R. Keil, A. Tünnermann, S. Nolte, S. Longhi, and A. Szameit, EPL 97 (2012) 10008.
S. Longhi, Opt. Lett. 35 (2010) 235.
F. Dreisow, M. Heinrich, R. Keil, A. Tünnermann, S. Nolte, S. Longhi, and A. Szameit, Phys. Rev. Lett. 105 (2010) 143902.
S. Longhi, Appl. Phys. B 104 (2011) 453.
J.M. Zeuner, N.K. Efremidis, R. Keil, F. Dreisow, D.N. Christodoulides, A. Tünnermann, S. Nolte, and A. Szameit, Phys. Rev. Lett. 109 (2012) 023602.
Tr.X. Tran and F. Biancalana, Phys. Rev. A 96 (2017) 013831.
R. Jackiw and C. Rebbi, Phys. Rev. D 13 (1976) 3398.
R.B. Laughlin, “Nobel Lecture: Fractional quantization”, Rev. Mod. Phys. 71 (1999) 863.
M.Z. Hasan and C.L. Kane, Rev. Mod. Phys. 82 (2010) 3045.
X.L. Qi and S.C. Zhang, Rev. Mod. Phys. 83 (2011) 1057.
M.C. Rechtsman, J.M. Zeuner, Y. Plotnik, Y. Lumer, D. Podolsky, F. Dreisow, S. Nolte, M. Segev, and A. Szameit, Nature (London), 496 (2013) 196.
L. Lu, J.D. Joannopoulos, and M. Soljačic, Nat. Photonics 8 (2014) 821.
A.A. Sukhorukov and Y.S. Kivshar, Opt. Lett. 27 (2002) 2112.
A.A. Sukhorukov and Y.S. Kivshar, Opt. Lett. 28 (2003) 2345.
M. Conforti, C. De Angelis, and T.R. Akylas, Phys. Rev. A 83 (2011) 043822.
M. Johansson, K. Kirr, A.S. Kovalev, and L. Kroon, Physica Scripta 83 (2011) 065005.
A. Gorbach and M. Johansson, Eur. Phys. J. D 29 (2004) 77.
M. Johansson and A. Gorbach, Phys. Rev. E 70 (2004) 057604.
R. Morandotti, D. Mandelik, Y. Silberberg, J.S. Aitchison, M. Sorel, D.N. Christodoulides, A.A. Sukhorukov, and Y.S. Kivshar, Opt. Lett. 29 (2004) 2890.
Tr.X. Tran, S. Longhi, and F. Biancalana, Ann. Phys. 340 (2014) 179.
Y. Nogami, F.M. Toyama, and Z. Zhao, J. Phys. A: Math. Gen. 28 (1995) 1413.
Tr.X. Tran, X.N. Nguyen, and D.C. Duong, J. Opt. Soc. Am. B 31 (2014) 1132.
Tr.X. Tran, X.N. Nguyen, and F. Biancalana, Phys. Rev. A 91 (2015) 023814.
Tr.X. Tran and D.C. Duong, Ann. Phys. 361 (2015) 501.
W. Heisenberg, Rev. Mod. Phys. 29 (1957) 269.
D.C. Ionescu, R. Reinhardt, B. Muller, and W. Greiner, Phys. Rev. A 38 (1988) 616.
A. Zecca, Internat. J. Theoret. Phys. 41 (2002) 421.
M.J. Esteban and E. Séré, Discrete Contin. Dyn. Syst. 8 (2002) 381.
I. Bialynicki-Birula and J. Mycielski, Ann. Phys. 100 (1976) 62.
N. Kemmer, Helv. Phys. Acta 10 (1937) 47.
E. Fermi and C.N. Yang, Phys. Rev. 76 (1949) 1739.
G.P. Agrawal, Nonlinear Fiber Optics, 5th ed. (Academic, 2013).
Y.S. Kivshar and G.P. Agrawal, Optical Solitons: from Fiber to Photonic Crystals, 5th ed. (Academic, 2003).
R. Morandotti, U. Peschel, J.S. Aitchison, H.S. Eisenberg, and Y. Silberberg, Phys. Rev. Lett. 83 (1999) 2726.
P.G. Kevrekidis and M.I. Weinstein, Math. Comput. Simul. 62 (2003) 65.
G.P. Agrawal, Applications of Nonlinear Fiber Optics, 2nd ed. (Academic, 2008).
Tr.X. Tran, D.C. Duong, and F. Biancalana, Phys. Rev. A 90 (2014) 023857.
Downloads
Published
How to Cite
Issue
Section
License
Communications in Physics is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Copyright on any research article published in Communications in Physics is retained by the respective author(s), without restrictions. Authors grant VAST Journals System (VJS) a license to publish the article and identify itself as the original publisher. Upon author(s) by giving permission to Communications in Physics either via Communications in Physics portal or other channel to publish their research work in Communications in Physics agrees to all the terms and conditions of https://creativecommons.org/licenses/by-sa/4.0/ License and terms & condition set by VJS.


