Unfolding Band and Absorption Energy Shift of \(\text{Si-Ge}\) Nano Crystals from First-principles Calculations
Author affiliations
DOI:
https://doi.org/10.15625/0868-3166/14942Keywords:
DFT-GGA, SiGe alloys, nanocrystals, unfolding bandAbstract
Physical properties of the Si\(_{1-x}\)Ge\(_{x}\) alloys ($x$ being the composition of Ge) can be understood and predicted from their electronic band structures. In this paper, electronic band structures of the Si\(_{1-x}\)Ge\(_{x}\) alloys are calculated using the first-principles density functional theory. The supper cell approach employed in our calculations leads to folding of electronic bands into the smaller Brillouin zone of the supercell, especially at the \(\Gamma\) point. This often leads to the misinterpretation that the materials have direct band gap. The problem can be resolved by an unfolding band technique which allows us to recover the primitive cell picture of band structure of Si\(_{1-x}\)Ge\(_{x}\). As a result, unfolded electronic bands correctly show an indirect band gap with the valence band maximum (VBM) at the $\Gamma $ point and the conduction band minimum (CBM) shifted away from \(\Gamma\). CBM is gradually shifted from a point along \(\Gamma X\) symmetry line (associated with Si) to the L point (associated with Ge) with the increased Ge composition \(x\) and the switching occurs at \(x\) in the range of 0.6\(\sim\)0.8 which is in accordance with the calculation using \textbf{\textit{kp}} method. Moreover, the additional electron pockets appear and develop at \(\Gamma\) and $L$. This provides more comprehensive understanding for our recent experimental observations on the shift of the absorption energy assigned to $E1$ direct transitions within \(L\) and \(\Gamma\) points in the Brillouin zone of Si\(_{1-x}\)Ge\(_{x}\) alloy nanocrystals.Downloads
References
[1] S. Choi, S.H. Tan, Z. Li, Y. Kim, C. Choi, P.Y. Chen, H. Yeon, S. Yu and J. Kim, Nat. Mater. 17 (2018) 335.
[2] D. Vasilache, A. Cismaru, M. Dragoman, I. Stavarache, C. Palade, A.-M. Lepadatu and M.L. Ciurea, Phys. Status
Solidi A 2132 (2016) 255.
[3] F. Meillaud, M. Boccard, G. Bugnon, M. Despeisse, S. Haenni, F.J. Haug, J. Persoz, J.W. Schuettauf, M. Stuckelberger, C. Ballif, Mater. Today 18 (2015) 378.
[4] M. Amato, M. Palummo, R. Rurali, S. Ossicini, E. Fondamentale, U. Paris-sud, A.P. Morselli and I.-R. Emilia,
Chem. Rev. 114 (2014) 1371.
[5] X. Wang, H. Li, R. Camacho-aguilera, Y. Cai, L.C. Kimerling, J. Michel and J. Liu, Opt. Lett. 38 (2013) 652.
[6] D.M. Paskiewicz, B. Tanto, D.E. Savage and M.G. Lagally, ACS Nano 5 (2011) 5814.
[7] E.S. Zhukova, B.P. Gorshunov, V. a. Yuryev, L. V. Arapkina, K. V. Chizh, V. a. Chapnin, V.P. Kalinushkin, a. S.
Prokhorov and G.N. Mikhailova, JETP Lett. 92 (2010) 793.
[8] E.K. Lee, L. Yin, Y. Lee, J.W. Lee, S.J. Lee, J. Lee, S.N. Cha, D. Whang, G.S. Hwang, K. Hippalgaonkar, A.
Majumdar, C. Yu, B. L. Choi, J. M. Kim and K. Kim, Nano Lett. 12 (2012) 2918.
[9] J. Li, Q. Xiang, R. Ze, M. Ma, S. Wang, Q. Xie and Y. Xiang, Appl. Therm. Eng. 134 (2018) 266.
[10] C.P. Goyal, M. Omprakash, M. Navaneethan, T. Takeuchi, Y. Shimura, M. Shimomura, S. Ponnusamy, Y.
Hayakawa and H. Ikeda, J. Phys. Commun. 3 (2019) 075007.
[11] P. Logan and X. Peng, Phys. Rev. B 80 (2009) 115322.
[12] T. Van Quang and M. Kim, J. Appl. Phys. 113 (2013) 17A934.
[13] M. V. Fischetti and S. E. Laux, J. Appl. Phys. 80 (1996) 2234.
[14] J.I. Abdul Rashid, J. Abdullah, N.A. Yusof and R. Hajian, J. Nanomater. 2013 (2013) 328093.
[15] N. T. Giang, L. T. Cong, N. D. Dung, T. Van Quang and N. N. Ha, J. Phys. Chem. Solids 93 (2016) 121.
[16] W. Kohn and L. J. Sham, Phys. Rev. 140 (1965) A1134.
[17] P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni,
I. Dabo, A.D. Corso, S. Fabris, G. Fratesi, S. de Gironcoli, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj,
M. Lazzeri, L. Martin-samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C.
Sbraccia, S. Scandolo, G. Sclauzero, A.P. Seitsonen, A. Smogunov, P. Umari, R.M. Wentzcovitch, S. De Gironcoli,
S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-samos, N.
Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, A. Smogunov and P. Umari,
J. Phys. Condens. Matter 21 (2009) 395502.
[18] J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett. 77 (1996) 3865.
[19] F. D. Murnaghan, Proc. Natl. Acad. Sci. U. S. A. 30 (1944) 244.
[20] C. C. Lee, Y. Yamada-Takamura, T. Ozaki, J. Phys. Condens. Matter. 25 (2013) 345501.
[21] W. Ku, T. Berlijn and C. C. Lee, Phys. Rev. Lett. 104 (2010) 216401.
[22] P. V. C. Medeiros, S. Stafstrom and J. Bj ¨ ork, ¨ Phys. Rev. B 89 (2014) 041407(R).
[23] P. V. C. Medeiros, S. S. Tsirkin and S. Stafstrom and J. Bj ¨ ork, ¨ Phys. Rev. B 91 (2015) 041116(R).
[24] T. Van Quang, N.T. Giang, N.N. Ha, VNU J. Sci. Math. – Phys. 32 (2016) 57.
[25] P. Haas, F. Tran, P. Blaha, Phys. Rev. B 79 (2009) 085104.
[26] T. Quang, H. Lim and M. Kim, J. Korean Phys. Soc. 61 (2012) 1728.
[27] D. M. Bylander, L. Kleinman, Phys. Rev. B 41 (1990) 7868.
[28] W. J. Elder, R. M. Ward, J. Zhang, Phys. Rev. B 83 (2011) 165210.
[29] N. N. Ha, N. T. Giang, T. T. T. Thuy, N. N. Trung, N. D. Dung, S. Saeed and T. Gregorkiewicz, Nanotechnology
(2015) 375701
Downloads
Published
How to Cite
Issue
Section
License
Communications in Physics is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Copyright on any research article published in Communications in Physics is retained by the respective author(s), without restrictions. Authors grant VAST Journals System (VJS) a license to publish the article and identify itself as the original publisher. Upon author(s) by giving permission to Communications in Physics either via Communications in Physics portal or other channel to publish their research work in Communications in Physics agrees to all the terms and conditions of https://creativecommons.org/licenses/by-sa/4.0/ License and terms & condition set by VJS.


