Experimental Verification of a TH\(\text{z}\) Multi-band Metamaterial Absorber

Van Huynh Tran, Xuan Khuyen Bui, Dinh Lam Vu, Son Tung Bui, Thi Hong Hiep Le, Thanh Tung Nguyen
Author affiliations

Authors

  • Van Huynh Tran
  • Xuan Khuyen Bui
  • Dinh Lam Vu
  • Son Tung Bui
  • Thi Hong Hiep Le
  • Thanh Tung Nguyen

DOI:

https://doi.org/10.15625/0868-3166/30/4/15081

Keywords:

metamaterial absorbers, multi-band, THz frequencies

Abstract

Multi-band metamaterial absorbers have been of great interest owing to their potentials for a wide range of communicating, sensing, imaging, and energy harvesting applications. In this work, we experimentally investigate a four-band metamaterial absorber operating at THz frequencies. The metamaterials are fabricated using the maskless UV photolithography and e-beam evaporation techniques. The absorption spectra of the proposed absorber are measured using the micro-Fourier transformed infrared spectroscopy. It was demonstrated that multi-band absorption behavior originates from different individual metamaterial resonators. The thickness of the dielectric spacer plays a key role in optimizing the absorption performance, in line with the predicted results on single-band THz absorbers.

Downloads

Download data is not yet available.

References

[1] Carlo Sirtori, Nature 417 (2002) 132.

[2] Gwyn P Williams, Rep. Prog. Phys. 69 (2006) 301.

[3] W. Xu, L. Xie, and Y. Ying, Nanoscale 9 (2017) 13864.

[4] N. T. Tung, Y. P. Lee, and V. D. Lam, Opt. Rev. 16 (2009) 578.

[5] N. T. Tung, T. X. Hoai, V. D. Lam, and Y. P. Lee, Comput. Mat. Sci. 49 (2010) 284.

[6] N. T. Tung and T. Tanaka, Photon. Nanostruct.: Fund. Appl. 28 (2018) 100.

[7] M. Lapke, T. Mussenbrock, R. P. Brinkmann, C. Scharwitz, M. Boke and J. Winter, Appl. Phys. Lett. 90 (2007)

[8] J. Huo, L. Wang and H. Yu, J. Mater. Sci. 44 (2009) 3917.

[9] N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith and W. J. Padilla, Phys. Rev. Lett. 100 (2008) 207402.

[10] A. Ishikawa and T. Tanaka, Sci. Reports 5 (2015) 12570.

[11] C. M. Watts, X. Liu, W. J. Padilla, Adv. Mat. 24 (2012) OP98.

[12] Li Huang and Hou-Tong Chen, Terahertz Sci. Technol. 6 (2013) 26.

[13] N. T. Hien, B. S. Tung, N. T. Tuan, N. T. Tung, Y. P. Lee, N. M. An and V. D. Lam, Adv. Nat. Sci.: Nanosci.

Nanotech. 5 (2014) 025013.

[14] D. H. Luu, N. V. Cuong, L. D. Hai, N. H. Tung, T. M. Cuong, L. D. Tuyen and V. D. Lam, J. Nonlinear Opt.

Phys. Mater. 26 (2017) 1750036.

[15] T. M. Cuong, L. D. Hai, P. V. Hai, D. H. Tung, L. D. Tuyen, D. H. Luu and V. D. Lam, Sci. Rep. 8 (2018) 9523.

[16] B. X. Wang, Y. H. He, P. C. Lou and W. H. Xing, Nanoscale Adv. 2 (2020) 763.

[17] T. V. Huynh, B. X. Khuyen, B. S. Tung, S. T. Ngo, V. D. Lam, and N. T. Tung, Comput. Mat. Sci. 166 (2019)

[18] U. T. D. Thuy, N. T. Thuy, N. T. Tung, E. Janssens, and N. Q. Liem, APL Mater. 7 (2019) 071102.

[19] P. T. Trang, B. H. Nguyen, D. H. Tiep, L. M. Thuy, V. D. Lam, and N. T. Tung, J. Elec. Mater. 45 (2016) 2547.

[20] B. S. Tung, N. V. Dung, B. X. Khuyen, N. T. Tung, P. Lievens, Y. P. Lee, and V. D. Lam, J. Opt. 15 (2013)

[21] N. T. Hien, L. N. Le, P. T. Trang, B. S. Tung, N. D. Viet, P. T. Duyen, N. M. Thang, D. T. Viet, Y. P. Lee, V. D.

Lam, and N. T. Tung, Comp. Mat. Sci. 103 (2015) 189.

[22] L. N. Le, N. M. Thang, L. M. Thuy and N. T. Tung, Opt. Comm. 383 (2016) 244.

[23] C. Z. Tan, J. Non-Cryst. Solids 223 (1998) 158.

[24] V. D. Lam, N. T. Tung, M. H. Cho, J. W. Park, W. H. Jang and Y. P. Lee, J. Phys. D: Appl. Phys. 42 (2009)

[25] N. T. Tung, V. D. Lam, M. H. Cho, J. W. Park, W. H. Jang, and Y. P. Lee, Photon. Nanostruct.: Fund. Appl. 7

(2009) 206.

Downloads

Published

20-10-2020

How to Cite

[1]
V. H. Tran, X. K. Bui, D. L. Vu, S. T. Bui, T. H. H. Le, and T. T. Nguyen, “Experimental Verification of a TH\(\text{z}\) Multi-band Metamaterial Absorber”, Comm. Phys., vol. 30, no. 4, p. 311, Oct. 2020.

Issue

Section

Papers

Most read articles by the same author(s)

Similar Articles

<< < 1 2 3 4 > >> 

You may also start an advanced similarity search for this article.